/* * scsi.c Copyright (C) 1992 Drew Eckhardt * Copyright (C) 1993, 1994, 1995 Eric Youngdale * * generic mid-level SCSI driver * Initial versions: Drew Eckhardt * Subsequent revisions: Eric Youngdale * * * * Bug correction thanks go to : * Rik Faith * Tommy Thorn * Thomas Wuensche * * Modified by Eric Youngdale ericy@cais.com to * add scatter-gather, multiple outstanding request, and other * enhancements. */ #include #include #include #include #include #include #include #include #include "../block/blk.h" #include "scsi.h" #include "hosts.h" #include "constants.h" #undef USE_STATIC_SCSI_MEMORY /* static const char RCSid[] = "$Header: /usr/src/linux/kernel/blk_drv/scsi/RCS/scsi.c,v 1.5 1993/09/24 12:45:18 drew Exp drew $"; */ /* Command groups 3 and 4 are reserved and should never be used. */ const unsigned char scsi_command_size[8] = { 6, 10, 10, 12, 12, 12, 10, 10 }; #define INTERNAL_ERROR (panic ("Internal error in file %s, line %d.\n", __FILE__, __LINE__)) static void scsi_done (Scsi_Cmnd *SCpnt); static int update_timeout (Scsi_Cmnd *, int); static void print_inquiry(unsigned char *data); static void scsi_times_out (Scsi_Cmnd * SCpnt); static int time_start; static int time_elapsed; static volatile struct Scsi_Host * host_active = NULL; #define SCSI_BLOCK(HOST) ((HOST->block && host_active && HOST != host_active) \ || (HOST->can_queue && HOST->host_busy >= HOST->can_queue)) #define MAX_SCSI_DEVICE_CODE 10 const char *const scsi_device_types[MAX_SCSI_DEVICE_CODE] = { "Direct-Access ", "Sequential-Access", "Printer ", "Processor ", "WORM ", "CD-ROM ", "Scanner ", "Optical Device ", "Medium Changer ", "Communications " }; /* global variables : scsi_devices an array of these specifying the address for each (host, id, LUN) */ Scsi_Device * scsi_devices = NULL; /* Process ID of SCSI commands */ unsigned long scsi_pid = 0; static unsigned long serial_number = 0; static unsigned char generic_sense[6] = {REQUEST_SENSE, 0,0,0, 255, 0}; /* This variable is merely a hook so that we can debug the kernel with gdb. */ Scsi_Cmnd * last_cmnd = NULL; /* * As the scsi do command functions are intelligent, and may need to * redo a command, we need to keep track of the last command * executed on each one. */ #define WAS_RESET 0x01 #define WAS_TIMEDOUT 0x02 #define WAS_SENSE 0x04 #define IS_RESETTING 0x08 #define IS_ABORTING 0x10 #define ASKED_FOR_SENSE 0x20 /* * This is the number of clock ticks we should wait before we time out * and abort the command. This is for where the scsi.c module generates * the command, not where it originates from a higher level, in which * case the timeout is specified there. * * ABORT_TIMEOUT and RESET_TIMEOUT are the timeouts for RESET and ABORT * respectively. */ #ifdef DEBUG_TIMEOUT static void scsi_dump_status(void); #endif #ifdef DEBUG #define SCSI_TIMEOUT 500 #else #define SCSI_TIMEOUT 100 #endif #ifdef DEBUG #define SENSE_TIMEOUT SCSI_TIMEOUT #define ABORT_TIMEOUT SCSI_TIMEOUT #define RESET_TIMEOUT SCSI_TIMEOUT #else #define SENSE_TIMEOUT 50 #define RESET_TIMEOUT 50 #define ABORT_TIMEOUT 50 #endif #define MIN_RESET_DELAY 100 /* Do not call reset on error if we just did a reset within 10 sec. */ #define MIN_RESET_PERIOD 1000 /* The following devices are known not to tolerate a lun != 0 scan for one reason or another. Some will respond to all luns, others will lock up. */ struct blist{ char * vendor; char * model; char * revision; /* Latest revision known to be bad. Not used yet */ }; static struct blist blacklist[] = { {"CHINON","CD-ROM CDS-431","H42"}, /* Locks up if polled for lun != 0 */ {"CHINON","CD-ROM CDS-535","Q14"}, /* Lockup if polled for lun != 0 */ {"DENON","DRD-25X","V"}, /* A cdrom that locks up when probed at lun != 0 */ {"HITACHI","DK312C","CM81"}, /* Responds to all lun - dtg */ {"HITACHI","DK314C","CR21" }, /* responds to all lun */ {"IMS", "CDD521/10","2.06"}, /* Locks-up when LUN>0 polled. */ {"MAXTOR","XT-3280","PR02"}, /* Locks-up when LUN>0 polled. */ {"MAXTOR","XT-4380S","B3C"}, /* Locks-up when LUN>0 polled. */ {"MAXTOR","MXT-1240S","I1.2"}, /* Locks up when LUN > 0 polled */ {"MAXTOR","XT-4170S","B5A"}, /* Locks-up sometimes when LUN>0 polled. */ {"MAXTOR","XT-8760S","B7B"}, /* guess what? */ {"NEC","CD-ROM DRIVE:841","1.0"}, /* Locks-up when LUN>0 polled. */ {"RODIME","RO3000S","2.33"}, /* Locks up if polled for lun != 0 */ {"SEAGATE", "ST157N", "\004|j"}, /* causes failed REQUEST SENSE on lun 1 for aha152x * controller, which causes SCSI code to reset bus.*/ {"SEAGATE", "ST296","921"}, /* Responds to all lun */ {"SONY","CD-ROM CDU-541","4.3d"}, {"SONY","CD-ROM CDU-55S","1.0i"}, {"TANDBERG","TDC 3600","U07"}, /* Locks up if polled for lun != 0 */ {"TEAC","CD-ROM","1.06"}, /* causes failed REQUEST SENSE on lun 1 for seagate * controller, which causes SCSI code to reset bus.*/ {"TEXEL","CD-ROM","1.06"}, /* causes failed REQUEST SENSE on lun 1 for seagate * controller, which causes SCSI code to reset bus.*/ {"QUANTUM","LPS525S","3110"},/* Locks sometimes if polled for lun != 0 */ {"QUANTUM","PD1225S","3110"},/* Locks sometimes if polled for lun != 0 */ {"MEDIAVIS","CDR-H93MV","1.31"}, /* Locks up if polled for lun != 0 */ {"SANKYO", "CP525","6.64"}, /* causes failed REQ SENSE, extra reset */ {"HP", "C1750A", "3226"}, /* scanjet iic */ {"HP", "C1790A", ""}, /* scanjet iip */ {"HP", "C2500A", ""}, /* scanjet iicx */ {NULL, NULL, NULL}}; static int blacklisted(unsigned char * response_data){ int i = 0; unsigned char * pnt; for(i=0; 1; i++){ if(blacklist[i].vendor == NULL) return 0; pnt = &response_data[8]; while(*pnt && *pnt == ' ') pnt++; if(memcmp(blacklist[i].vendor, pnt, strlen(blacklist[i].vendor))) continue; pnt = &response_data[16]; while(*pnt && *pnt == ' ') pnt++; if(memcmp(blacklist[i].model, pnt, strlen(blacklist[i].model))) continue; return 1; } } /* * As the actual SCSI command runs in the background, we must set up a * flag that tells scan_scsis() when the result it has is valid. * scan_scsis can set the_result to -1, and watch for it to become the * actual return code for that call. the scan_scsis_done function() is * our user specified completion function that is passed on to the * scsi_do_cmd() function. */ volatile int in_scan_scsis = 0; static int the_result; void scsi_make_blocked_list(void) { int block_count = 0, index; unsigned int flags; struct Scsi_Host * sh[128], * shpnt; /* * Create a circular linked list from the scsi hosts which have * the "wish_block" field in the Scsi_Host structure set. * The blocked list should include all the scsi hosts using ISA DMA. * In some systems, using two dma channels simultaneously causes * unpredictable results. * Among the scsi hosts in the blocked list, only one host at a time * is allowed to have active commands queued. The transition from * one active host to the next one is allowed only when host_busy == 0 * for the active host (which implies host_busy == 0 for all the hosts * in the list). Moreover for block devices the transition to a new * active host is allowed only when a request is completed, since a * block device request can be divided into multiple scsi commands * (when there are few sg lists or clustering is disabled). * * (DB, 4 Feb 1995) */ save_flags(flags); cli(); host_active = NULL; for(shpnt=scsi_hostlist; shpnt; shpnt = shpnt->next) { #if 0 /* * Is this is a candidate for the blocked list? * Useful to put into the blocked list all the hosts whose driver * does not know about the host->block feature. */ if (shpnt->unchecked_isa_dma) shpnt->wish_block = 1; #endif if (shpnt->wish_block) sh[block_count++] = shpnt; } if (block_count == 1) sh[0]->block = NULL; else if (block_count > 1) { for(index = 0; index < block_count - 1; index++) { sh[index]->block = sh[index + 1]; printk("scsi%d : added to blocked host list.\n", sh[index]->host_no); } sh[block_count - 1]->block = sh[0]; printk("scsi%d : added to blocked host list.\n", sh[index]->host_no); } restore_flags(flags); } static void scan_scsis_done (Scsi_Cmnd * SCpnt) { #ifdef DEBUG printk ("scan_scsis_done(%d, %06x)\n", SCpnt->host, SCpnt->result); #endif SCpnt->request.dev = 0xfffe; if (SCpnt->request.sem != NULL) up(SCpnt->request.sem); } #ifdef CONFIG_SCSI_MULTI_LUN static int max_scsi_luns = 8; #else static int max_scsi_luns = 1; #endif void scsi_luns_setup(char *str, int *ints) { if (ints[0] != 1) printk("scsi_luns_setup : usage max_scsi_luns=n (n should be between 1 and 8)\n"); else max_scsi_luns = ints[1]; } /* * Detecting SCSI devices : * We scan all present host adapter's busses, from ID 0 to ID 6. * We use the INQUIRY command, determine device type, and pass the ID / * lun address of all sequential devices to the tape driver, all random * devices to the disk driver. */ void scan_scsis (struct Scsi_Host * shpnt) { int dev, lun, type; unsigned char scsi_cmd [12]; unsigned char scsi_result0 [256]; unsigned char * scsi_result; Scsi_Device * SDpnt, *SDtail; struct Scsi_Device_Template * sdtpnt; Scsi_Cmnd *SCpnt; ++in_scan_scsis; lun = 0; type = -1; SCpnt = (Scsi_Cmnd *) scsi_init_malloc(sizeof(Scsi_Cmnd), GFP_ATOMIC|GFP_DMA); SDpnt = (Scsi_Device *) scsi_init_malloc(sizeof (Scsi_Device), GFP_ATOMIC); SDtail = scsi_devices; if(scsi_devices) while(SDtail->next) SDtail = SDtail->next; /* Make sure we have something that is valid for DMA purposes */ scsi_result = ((current == task[0] || !shpnt->unchecked_isa_dma) ? &scsi_result0[0] : scsi_malloc(512)); shpnt->host_queue = SCpnt; /* We need this so that commands can time out */ for (dev = 0; dev < 8; ++dev) if (shpnt->this_id != dev) /* * We need the for so our continue, etc. work fine. */ for (lun = 0; lun < max_scsi_luns; ++lun) { memset(SDpnt, 0, sizeof(Scsi_Device)); SDpnt->host = shpnt; SDpnt->id = dev; SDpnt->lun = lun; /* Some low level driver could use device->type (DB) */ SDpnt->type = -1; /* * Assume that the device will have handshaking problems, and then * fix this field later if it turns out it doesn't. */ SDpnt->borken = 1; scsi_cmd[0] = TEST_UNIT_READY; scsi_cmd[1] = lun << 5; scsi_cmd[2] = scsi_cmd[3] = scsi_cmd[4] = scsi_cmd[5] = 0; memset(SCpnt, 0, sizeof(Scsi_Cmnd)); SCpnt->host = SDpnt->host; SCpnt->device = SDpnt; SCpnt->target = SDpnt->id; SCpnt->lun = SDpnt->lun; /* Used for mutex if loading devices after boot */ SCpnt->request.sem = NULL; SCpnt->request.dev = 0xffff; /* Mark not busy */ scsi_do_cmd (SCpnt, (void *) scsi_cmd, (void *) scsi_result, 256, scan_scsis_done, SCSI_TIMEOUT + 400, 5); /* Wait for command to finish. Use simple wait if we are booting, else do it right and use a mutex */ if (current == task[0]) while (SCpnt->request.dev != 0xfffe) barrier(); else if (SCpnt->request.dev != 0xfffe) { struct semaphore sem = MUTEX_LOCKED; SCpnt->request.sem = &sem; down(&sem); /* Hmm.. Have to ask about this one */ while (SCpnt->request.dev != 0xfffe) schedule(); } #if defined(DEBUG) || defined(DEBUG_INIT) printk("scsi: scan SCSIS id %d lun %d\n", dev, lun); printk("scsi: return code %08x\n", SCpnt->result); #endif if(SCpnt->result) { if (((driver_byte(SCpnt->result) & DRIVER_SENSE) || (status_byte(SCpnt->result) & CHECK_CONDITION)) && ((SCpnt->sense_buffer[0] & 0x70) >> 4) == 7) { if(((SCpnt->sense_buffer[2] & 0xf) != NOT_READY) && ((SCpnt->sense_buffer[2] & 0xf) != UNIT_ATTENTION) && ((SCpnt->sense_buffer[2] & 0xf) != ILLEGAL_REQUEST || lun > 0)) continue; } else break; } #if defined (DEBUG) || defined(DEBUG_INIT) printk("scsi: performing INQUIRY\n"); #endif /* * Build an INQUIRY command block. */ scsi_cmd[0] = INQUIRY; scsi_cmd[1] = (lun << 5) & 0xe0; scsi_cmd[2] = 0; scsi_cmd[3] = 0; scsi_cmd[4] = 255; scsi_cmd[5] = 0; SCpnt->request.dev = 0xffff; /* Mark not busy */ SCpnt->cmd_len = 0; scsi_do_cmd (SCpnt, (void *) scsi_cmd, (void *) scsi_result, 256, scan_scsis_done, SCSI_TIMEOUT, 3); if (current == task[0]) while (SCpnt->request.dev != 0xfffe) barrier(); else if (SCpnt->request.dev != 0xfffe) { struct semaphore sem = MUTEX_LOCKED; SCpnt->request.sem = &sem; down(&sem); /* Hmm.. Have to ask about this one */ while (SCpnt->request.dev != 0xfffe) schedule(); } the_result = SCpnt->result; #if defined(DEBUG) || defined(DEBUG_INIT) if (!the_result) printk("scsi: INQUIRY successful\n"); else printk("scsi: INQUIRY failed with code %08x\n", the_result); #endif if(the_result) break; /* skip other luns on this device */ if (!the_result) { /* It would seem some TOSHIBA CD-ROM gets things wrong */ if (!strncmp(scsi_result+8,"TOSHIBA",7) && !strncmp(scsi_result+16,"CD-ROM",6) && scsi_result[0] == TYPE_DISK) { scsi_result[0] = TYPE_ROM; scsi_result[1] |= 0x80; /* removable */ } if (!strncmp(scsi_result+8,"NEC",3)) { if (!strncmp(scsi_result+16,"CD-ROM DRIVE:84 ",16) || !strncmp(scsi_result+16,"CD-ROM DRIVE:25",15) || !strncmp(scsi_result+16,"CD-ROM DRIVE:83",15)) SDpnt->manufacturer = SCSI_MAN_NEC_OLDCDR; else SDpnt->manufacturer = SCSI_MAN_NEC; } else if (!strncmp(scsi_result+8,"TOSHIBA",7)) SDpnt->manufacturer = SCSI_MAN_TOSHIBA; else SDpnt->manufacturer = SCSI_MAN_UNKNOWN; SDpnt->removable = (0x80 & scsi_result[1]) >> 7; SDpnt->lockable = SDpnt->removable; SDpnt->changed = 0; SDpnt->access_count = 0; SDpnt->busy = 0; /* * Currently, all sequential devices are assumed to be tapes, * all random devices disk, with the appropriate read only * flags set for ROM / WORM treated as RO. */ switch (type = (scsi_result[0] & 0x1f)) { case TYPE_TAPE : case TYPE_DISK : case TYPE_MOD : case TYPE_PROCESSOR : case TYPE_SCANNER : SDpnt->writeable = 1; break; case TYPE_WORM : case TYPE_ROM : SDpnt->writeable = 0; break; default : #if 0 #ifdef DEBUG printk("scsi: unknown type %d\n", type); print_inquiry(scsi_result); #endif type = -1; #endif } SDpnt->soft_reset = (scsi_result[7] & 1) && ((scsi_result[3] & 7) == 2); SDpnt->random = (type == TYPE_TAPE) ? 0 : 1; SDpnt->type = (type & 0x1f); if (type != -1) { print_inquiry(scsi_result); for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->detect) SDpnt->attached += (*sdtpnt->detect)(SDpnt); SDpnt->scsi_level = scsi_result[2] & 0x07; if (SDpnt->scsi_level >= 2 || (SDpnt->scsi_level == 1 && (scsi_result[3] & 0x0f) == 1)) SDpnt->scsi_level++; /* * Set the tagged_queue flag for SCSI-II devices that purport to support * tagged queuing in the INQUIRY data. */ SDpnt->tagged_queue = 0; if ((SDpnt->scsi_level >= SCSI_2) && (scsi_result[7] & 2)) { SDpnt->tagged_supported = 1; SDpnt->current_tag = 0; } if (strncmp("MICROP", scsi_result+8, 6) == 0 && strncmp("4110", scsi_result+16, 4) == 0) /* Micropolis 4110 implements tagged queuing incorrectly. */ SDpnt->tagged_supported = 0; /* * Accommodate drivers that want to sleep when they should be in a polling * loop. */ SDpnt->disconnect = 0; /* * Some revisions of the Texel CD ROM drives have handshaking * problems when used with the Seagate controllers. Before we * know what type of device we're talking to, we assume it's * borken and then change it here if it turns out that it isn't * a TEXEL drive. */ if(strncmp("TEXEL", (char *) &scsi_result[8], 5) != 0 || strncmp("CD-ROM", (char *) &scsi_result[16], 6) != 0 /* * XXX 1.06 has problems, some one should figure out the others too so * ALL TEXEL drives don't suffer in performance, especially when I finish * integrating my seagate patches which do multiple I_T_L nexuses. */ #ifdef notyet || (strncmp("1.06", (char *) &scsi_result[[, 4) != 0))) #endif ) SDpnt->borken = 0; /* These devices need this "key" to unlock the device so we can use it */ if(memcmp("INSITE", &scsi_result[8], 6) == 0 && (memcmp("Floptical F*8I", &scsi_result[16], 16) == 0 || memcmp("I325VM", &scsi_result[16], 6) == 0)) { printk("Unlocked floptical drive.\n"); SDpnt->lockable = 0; scsi_cmd[0] = MODE_SENSE; scsi_cmd[1] = (lun << 5) & 0xe0; scsi_cmd[2] = 0x2e; scsi_cmd[3] = 0; scsi_cmd[4] = 0x2a; scsi_cmd[5] = 0; SCpnt->request.dev = 0xffff; /* Mark not busy */ SCpnt->cmd_len = 0; scsi_do_cmd (SCpnt, (void *) scsi_cmd, (void *) scsi_result, 0x2a, scan_scsis_done, SCSI_TIMEOUT, 3); if (current == task[0]) while (SCpnt->request.dev != 0xfffe) barrier(); else if (SCpnt->request.dev != 0xfffe) { struct semaphore sem = MUTEX_LOCKED; SCpnt->request.sem = &sem; down(&sem); /* Hmm.. Have to ask about this one */ while (SCpnt->request.dev != 0xfffe) schedule(); } } /* Add this device to the linked list at the end */ if(SDtail) SDtail->next = SDpnt; else scsi_devices = SDpnt; SDtail = SDpnt; SDpnt = (Scsi_Device *) scsi_init_malloc(sizeof (Scsi_Device), GFP_ATOMIC); /* Some scsi devices cannot be polled for lun != 0 due to firmware bugs */ if(blacklisted(scsi_result)) break; /* Old drives like the MAXTOR XT-3280 say vers=0 */ if ((scsi_result[2] & 0x07) == 0) break; /* Some scsi-1 peripherals do not handle lun != 0. I am assuming that scsi-2 peripherals do better */ if((scsi_result[2] & 0x07) == 1 && (scsi_result[3] & 0x0f) == 0) break; } } /* if result == DID_OK ends */ } /* for lun ends */ shpnt->host_queue = NULL; /* No longer needed here */ /* Last device block does not exist. Free memory. */ scsi_init_free((char *) SDpnt, sizeof(Scsi_Device)); scsi_init_free((char *) SCpnt, sizeof(Scsi_Cmnd)); /* If we allocated a buffer so we could do DMA, free it now */ if (scsi_result != &scsi_result0[0]) scsi_free(scsi_result, 512); in_scan_scsis = 0; } /* scan_scsis ends */ /* * Flag bits for the internal_timeout array */ #define NORMAL_TIMEOUT 0 #define IN_ABORT 1 #define IN_RESET 2 /* This is our time out function, called when the timer expires for a given host adapter. It will attempt to abort the currently executing command, that failing perform a kernel panic. */ static void scsi_times_out (Scsi_Cmnd * SCpnt) { switch (SCpnt->internal_timeout & (IN_ABORT | IN_RESET)) { case NORMAL_TIMEOUT: if (!in_scan_scsis) { #ifdef DEBUG_TIMEOUT scsi_dump_status(); #endif } if (!scsi_abort (SCpnt, DID_TIME_OUT)) return; case IN_ABORT: printk("SCSI host %d abort (pid %ld) timed out - resetting\n", SCpnt->host->host_no, SCpnt->pid); if (!scsi_reset (SCpnt, SCSI_RESET_ASYNCHRONOUS)) return; case IN_RESET: case (IN_ABORT | IN_RESET): /* This might be controversial, but if there is a bus hang, you might conceivably want the machine up and running esp if you have an ide disk. */ printk("Unable to reset scsi host %d - ",SCpnt->host->host_no); printk("probably a SCSI bus hang.\n"); SCpnt->internal_timeout &= ~IN_RESET; scsi_reset (SCpnt, SCSI_RESET_ASYNCHRONOUS); return; default: INTERNAL_ERROR; } } /* This function takes a quick look at a request, and decides if it can be queued now, or if there would be a stall while waiting for something else to finish. This routine assumes that interrupts are turned off when entering the routine. It is the responsibility of the calling code to ensure that this is the case. */ Scsi_Cmnd * request_queueable (struct request * req, Scsi_Device * device) { Scsi_Cmnd * SCpnt = NULL; int tablesize; struct buffer_head * bh, *bhp; if (!device) panic ("No device passed to request_queueable().\n"); if (req && req->dev <= 0) panic("Invalid device in request_queueable"); SCpnt = device->device_queue; while(SCpnt){ if(SCpnt->request.dev < 0) break; SCpnt = SCpnt->device_next; } if (!SCpnt) return NULL; if (SCSI_BLOCK(device->host)) return NULL; if (req) { memcpy(&SCpnt->request, req, sizeof(struct request)); tablesize = device->host->sg_tablesize; bhp = bh = req->bh; if(!tablesize) bh = NULL; /* Take a quick look through the table to see how big it is. We already have our copy of req, so we can mess with that if we want to. */ while(req->nr_sectors && bh){ bhp = bhp->b_reqnext; if(!bhp || !CONTIGUOUS_BUFFERS(bh,bhp)) tablesize--; req->nr_sectors -= bh->b_size >> 9; req->sector += bh->b_size >> 9; if(!tablesize) break; bh = bhp; } if(req->nr_sectors && bh && bh->b_reqnext){ /* Any leftovers? */ SCpnt->request.bhtail = bh; req->bh = bh->b_reqnext; /* Divide request */ bh->b_reqnext = NULL; bh = req->bh; /* Now reset things so that req looks OK */ SCpnt->request.nr_sectors -= req->nr_sectors; req->current_nr_sectors = bh->b_size >> 9; req->buffer = bh->b_data; SCpnt->request.sem = NULL; /* Wait until whole thing done */ } else { req->dev = -1; wake_up(&wait_for_request); } } else { SCpnt->request.dev = 0xffff; /* Busy, but no request */ SCpnt->request.sem = NULL; /* And no one is waiting for the device either */ } SCpnt->use_sg = 0; /* Reset the scatter-gather flag */ SCpnt->old_use_sg = 0; SCpnt->transfersize = 0; SCpnt->underflow = 0; SCpnt->cmd_len = 0; return SCpnt; } /* This function returns a structure pointer that will be valid for the device. The wait parameter tells us whether we should wait for the unit to become free or not. We are also able to tell this routine not to return a descriptor if the host is unable to accept any more commands for the time being. We need to keep in mind that there is no guarantee that the host remain not busy. Keep in mind the request_queueable function also knows the internal allocation scheme of the packets for each device */ Scsi_Cmnd * allocate_device (struct request ** reqp, Scsi_Device * device, int wait) { int dev = -1; struct request * req = NULL; int tablesize; unsigned int flags; struct buffer_head * bh, *bhp; struct Scsi_Host * host; Scsi_Cmnd * SCpnt = NULL; Scsi_Cmnd * SCwait = NULL; if (!device) panic ("No device passed to allocate_device().\n"); if (reqp) req = *reqp; /* See if this request has already been queued by an interrupt routine */ if (req && (dev = req->dev) <= 0) return NULL; host = device->host; if (intr_count && SCSI_BLOCK(host)) return NULL; while (1==1){ SCpnt = device->device_queue; while(SCpnt){ SCwait = SCpnt; if(SCpnt->request.dev < 0) break; SCpnt = SCpnt->device_next; } save_flags(flags); cli(); /* See if this request has already been queued by an interrupt routine */ if (req && ((req->dev < 0) || (req->dev != dev))) { restore_flags(flags); return NULL; } if (!SCpnt || SCpnt->request.dev >= 0) /* Might have changed */ { restore_flags(flags); if(!wait) return NULL; if (!SCwait) { printk("Attempt to allocate device target %d, lun %d\n", device->id ,device->lun); panic("No device found in allocate_device\n"); } SCSI_SLEEP(&device->device_wait, (SCwait->request.dev > 0)); } else { if (req) { memcpy(&SCpnt->request, req, sizeof(struct request)); tablesize = device->host->sg_tablesize; bhp = bh = req->bh; if(!tablesize) bh = NULL; /* Take a quick look through the table to see how big it is. We already have our copy of req, so we can mess with that if we want to. */ while(req->nr_sectors && bh){ bhp = bhp->b_reqnext; if(!bhp || !CONTIGUOUS_BUFFERS(bh,bhp)) tablesize--; req->nr_sectors -= bh->b_size >> 9; req->sector += bh->b_size >> 9; if(!tablesize) break; bh = bhp; } if(req->nr_sectors && bh && bh->b_reqnext){ /* Any leftovers? */ SCpnt->request.bhtail = bh; req->bh = bh->b_reqnext; /* Divide request */ bh->b_reqnext = NULL; bh = req->bh; /* Now reset things so that req looks OK */ SCpnt->request.nr_sectors -= req->nr_sectors; req->current_nr_sectors = bh->b_size >> 9; req->buffer = bh->b_data; SCpnt->request.sem = NULL; /* Wait until whole thing done */ } else { req->dev = -1; *reqp = req->next; wake_up(&wait_for_request); } } else { SCpnt->request.dev = 0xffff; /* Busy */ SCpnt->request.sem = NULL; /* And no one is waiting for this to complete */ } restore_flags(flags); break; } } SCpnt->use_sg = 0; /* Reset the scatter-gather flag */ SCpnt->old_use_sg = 0; SCpnt->transfersize = 0; /* No default transfer size */ SCpnt->cmd_len = 0; SCpnt->underflow = 0; /* Do not flag underflow conditions */ return SCpnt; } /* This is inline because we have stack problemes if we recurse to deeply. */ inline void internal_cmnd (Scsi_Cmnd * SCpnt) { int temp; struct Scsi_Host * host; unsigned int flags; #ifdef DEBUG_DELAY int clock; #endif if ((unsigned long) &SCpnt < current->kernel_stack_page) panic("Kernel stack overflow."); host = SCpnt->host; /* We will wait MIN_RESET_DELAY clock ticks after the last reset so we can avoid the drive not being ready. */ save_flags(flags); cli(); /* Assign a unique nonzero serial_number. */ if (++serial_number == 0) serial_number = 1; SCpnt->serial_number = serial_number; temp = host->last_reset + MIN_RESET_DELAY; if (jiffies < temp) { sti(); while (jiffies < temp) ; } restore_flags(flags); update_timeout(SCpnt, SCpnt->timeout_per_command); /* We will use a queued command if possible, otherwise we will emulate the queuing and calling of completion function ourselves. */ #ifdef DEBUG printk("internal_cmnd (host = %d, target = %d, command = %08x, buffer = %08x, \n" "bufflen = %d, done = %08x)\n", SCpnt->host->host_no, SCpnt->target, SCpnt->cmnd, SCpnt->buffer, SCpnt->bufflen, SCpnt->done); #endif if (host->can_queue) { #ifdef DEBUG printk("queuecommand : routine at %08x\n", host->hostt->queuecommand); #endif /* This locking tries to prevent all sorts of races between queuecommand and the interrupt code. In effect, we are only allowed to be in queuecommand once at any given time, and we can only be in the interrupt handler and the queuecommand function at the same time when queuecommand is called while servicing the interrupt. */ if(!intr_count && SCpnt->host->irq) disable_irq(SCpnt->host->irq); host->hostt->queuecommand (SCpnt, scsi_done); if(!intr_count && SCpnt->host->irq) enable_irq(SCpnt->host->irq); } else { #ifdef DEBUG printk("command() : routine at %08x\n", host->hostt->command); #endif temp=host->hostt->command (SCpnt); SCpnt->result = temp; #ifdef DEBUG_DELAY clock = jiffies + 400; while (jiffies < clock); printk("done(host = %d, result = %04x) : routine at %08x\n", host->host_no, temp); #endif scsi_done(SCpnt); } #ifdef DEBUG printk("leaving internal_cmnd()\n"); #endif } static void scsi_request_sense (Scsi_Cmnd * SCpnt) { unsigned int flags; save_flags(flags); cli(); SCpnt->flags |= WAS_SENSE | ASKED_FOR_SENSE; update_timeout(SCpnt, SENSE_TIMEOUT); restore_flags(flags); memcpy ((void *) SCpnt->cmnd , (void *) generic_sense, sizeof(generic_sense)); SCpnt->cmnd[1] = SCpnt->lun << 5; SCpnt->cmnd[4] = sizeof(SCpnt->sense_buffer); SCpnt->request_buffer = &SCpnt->sense_buffer; SCpnt->request_bufflen = sizeof(SCpnt->sense_buffer); SCpnt->use_sg = 0; SCpnt->cmd_len = COMMAND_SIZE(SCpnt->cmnd[0]); internal_cmnd (SCpnt); } /* scsi_do_cmd sends all the commands out to the low-level driver. It handles the specifics required for each low level driver - ie queued or non queued. It also prevents conflicts when different high level drivers go for the same host at the same time. */ void scsi_do_cmd (Scsi_Cmnd * SCpnt, const void *cmnd , void *buffer, unsigned bufflen, void (*done)(Scsi_Cmnd *), int timeout, int retries ) { unsigned long flags; struct Scsi_Host * host = SCpnt->host; #ifdef DEBUG { int i; int target = SCpnt->target; printk ("scsi_do_cmd (host = %d, target = %d, buffer =%08x, " "bufflen = %d, done = %08x, timeout = %d, retries = %d)\n" "command : " , host->host_no, target, buffer, bufflen, done, timeout, retries); for (i = 0; i < 10; ++i) printk ("%02x ", ((unsigned char *) cmnd)[i]); printk("\n"); } #endif if (!host) { panic ("Invalid or not present host.\n"); } /* We must prevent reentrancy to the lowlevel host driver. This prevents it - we enter a loop until the host we want to talk to is not busy. Race conditions are prevented, as interrupts are disabled in between the time we check for the host being not busy, and the time we mark it busy ourselves. */ save_flags(flags); cli(); SCpnt->pid = scsi_pid++; while (SCSI_BLOCK(host)) { restore_flags(flags); SCSI_SLEEP(&host->host_wait, SCSI_BLOCK(host)); cli(); } if (host->block) host_active = host; host->host_busy++; restore_flags(flags); /* Our own function scsi_done (which marks the host as not busy, disables the timeout counter, etc) will be called by us or by the scsi_hosts[host].queuecommand() function needs to also call the completion function for the high level driver. */ memcpy ((void *) SCpnt->data_cmnd , (void *) cmnd, 12); #if 0 SCpnt->host = host; SCpnt->target = target; SCpnt->lun = (SCpnt->data_cmnd[1] >> 5); #endif SCpnt->reset_chain = NULL; SCpnt->serial_number = 0; SCpnt->bufflen = bufflen; SCpnt->buffer = buffer; SCpnt->flags=0; SCpnt->retries=0; SCpnt->allowed=retries; SCpnt->done = done; SCpnt->timeout_per_command = timeout; memcpy ((void *) SCpnt->cmnd , (void *) cmnd, 12); /* Zero the sense buffer. Some host adapters automatically request sense on error. 0 is not a valid sense code. */ memset ((void *) SCpnt->sense_buffer, 0, sizeof SCpnt->sense_buffer); SCpnt->request_buffer = buffer; SCpnt->request_bufflen = bufflen; SCpnt->old_use_sg = SCpnt->use_sg; if (SCpnt->cmd_len == 0) SCpnt->cmd_len = COMMAND_SIZE(SCpnt->cmnd[0]); SCpnt->old_cmd_len = SCpnt->cmd_len; /* Start the timer ticking. */ SCpnt->internal_timeout = 0; SCpnt->abort_reason = 0; internal_cmnd (SCpnt); #ifdef DEBUG printk ("Leaving scsi_do_cmd()\n"); #endif } /* The scsi_done() function disables the timeout timer for the scsi host, marks the host as not busy, and calls the user specified completion function for that host's current command. */ static void reset (Scsi_Cmnd * SCpnt) { #ifdef DEBUG printk("scsi: reset(%d)\n", SCpnt->host->host_no); #endif SCpnt->flags |= (WAS_RESET | IS_RESETTING); scsi_reset(SCpnt, SCSI_RESET_SYNCHRONOUS); #ifdef DEBUG printk("performing request sense\n"); #endif #if 0 /* FIXME - remove this when done */ if(SCpnt->flags & NEEDS_JUMPSTART) { SCpnt->flags &= ~NEEDS_JUMPSTART; scsi_request_sense (SCpnt); } #endif } static int check_sense (Scsi_Cmnd * SCpnt) { /* If there is no sense information, request it. If we have already requested it, there is no point in asking again - the firmware must be confused. */ if (((SCpnt->sense_buffer[0] & 0x70) >> 4) != 7) { if(!(SCpnt->flags & ASKED_FOR_SENSE)) return SUGGEST_SENSE; else return SUGGEST_RETRY; } SCpnt->flags &= ~ASKED_FOR_SENSE; #ifdef DEBUG_INIT printk("scsi%d : ", SCpnt->host->host_no); print_sense("", SCpnt); printk("\n"); #endif if (SCpnt->sense_buffer[2] &0xe0) return SUGGEST_ABORT; switch (SCpnt->sense_buffer[2] & 0xf) { case NO_SENSE: return 0; case RECOVERED_ERROR: return SUGGEST_IS_OK; case ABORTED_COMMAND: return SUGGEST_RETRY; case NOT_READY: case UNIT_ATTENTION: return SUGGEST_ABORT; /* these three are not supported */ case COPY_ABORTED: case VOLUME_OVERFLOW: case MISCOMPARE: case MEDIUM_ERROR: return SUGGEST_REMAP; case BLANK_CHECK: case DATA_PROTECT: case HARDWARE_ERROR: case ILLEGAL_REQUEST: default: return SUGGEST_ABORT; } } /* This function is the mid-level interrupt routine, which decides how * to handle error conditions. Each invocation of this function must * do one and *only* one of the following: * * (1) Call last_cmnd[host].done. This is done for fatal errors and * normal completion, and indicates that the handling for this * request is complete. * (2) Call internal_cmnd to requeue the command. This will result in * scsi_done being called again when the retry is complete. * (3) Call scsi_request_sense. This asks the host adapter/drive for * more information about the error condition. When the information * is available, scsi_done will be called again. * (4) Call reset(). This is sort of a last resort, and the idea is that * this may kick things loose and get the drive working again. reset() * automatically calls scsi_request_sense, and thus scsi_done will be * called again once the reset is complete. * * If none of the above actions are taken, the drive in question * will hang. If more than one of the above actions are taken by * scsi_done, then unpredictable behavior will result. */ static void scsi_done (Scsi_Cmnd * SCpnt) { int status=0; int exit=0; int checked; int oldto; struct Scsi_Host * host = SCpnt->host; int result = SCpnt->result; SCpnt->serial_number = 0; oldto = update_timeout(SCpnt, 0); #ifdef DEBUG_TIMEOUT if(result) printk("Non-zero result in scsi_done %x %d:%d\n", result, SCpnt->target, SCpnt->lun); #endif /* If we requested an abort, (and we got it) then fix up the return status to say why */ if(host_byte(result) == DID_ABORT && SCpnt->abort_reason) SCpnt->result = result = (result & 0xff00ffff) | (SCpnt->abort_reason << 16); #define FINISHED 0 #define MAYREDO 1 #define REDO 3 #define PENDING 4 #ifdef DEBUG printk("In scsi_done(host = %d, result = %06x)\n", host->host_no, result); #endif if(SCpnt->flags & WAS_SENSE) { SCpnt->use_sg = SCpnt->old_use_sg; SCpnt->cmd_len = SCpnt->old_cmd_len; } switch (host_byte(result)) { case DID_OK: if (status_byte(result) && (SCpnt->flags & WAS_SENSE)) /* Failed to obtain sense information */ { SCpnt->flags &= ~WAS_SENSE; #if 0 /* This cannot possibly be correct. */ SCpnt->internal_timeout &= ~SENSE_TIMEOUT; #endif if (!(SCpnt->flags & WAS_RESET)) { printk("scsi%d : target %d lun %d request sense failed, performing reset.\n", SCpnt->host->host_no, SCpnt->target, SCpnt->lun); reset(SCpnt); return; } else { exit = (DRIVER_HARD | SUGGEST_ABORT); status = FINISHED; } } else switch(msg_byte(result)) { case COMMAND_COMPLETE: switch (status_byte(result)) { case GOOD: if (SCpnt->flags & WAS_SENSE) { #ifdef DEBUG printk ("In scsi_done, GOOD status, COMMAND COMPLETE, parsing sense information.\n"); #endif SCpnt->flags &= ~WAS_SENSE; #if 0 /* This cannot possibly be correct. */ SCpnt->internal_timeout &= ~SENSE_TIMEOUT; #endif switch (checked = check_sense(SCpnt)) { case SUGGEST_SENSE: case 0: #ifdef DEBUG printk("NO SENSE. status = REDO\n"); #endif update_timeout(SCpnt, oldto); status = REDO; break; case SUGGEST_IS_OK: break; case SUGGEST_REMAP: case SUGGEST_RETRY: #ifdef DEBUG printk("SENSE SUGGEST REMAP or SUGGEST RETRY - status = MAYREDO\n"); #endif status = MAYREDO; exit = DRIVER_SENSE | SUGGEST_RETRY; break; case SUGGEST_ABORT: #ifdef DEBUG printk("SENSE SUGGEST ABORT - status = FINISHED"); #endif status = FINISHED; exit = DRIVER_SENSE | SUGGEST_ABORT; break; default: printk ("Internal error %s %d \n", __FILE__, __LINE__); } } else { #ifdef DEBUG printk("COMMAND COMPLETE message returned, status = FINISHED. \n"); #endif exit = DRIVER_OK; status = FINISHED; } break; case CHECK_CONDITION: switch (check_sense(SCpnt)) { case 0: update_timeout(SCpnt, oldto); status = REDO; break; case SUGGEST_REMAP: case SUGGEST_RETRY: status = MAYREDO; exit = DRIVER_SENSE | SUGGEST_RETRY; break; case SUGGEST_ABORT: status = FINISHED; exit = DRIVER_SENSE | SUGGEST_ABORT; break; case SUGGEST_SENSE: scsi_request_sense (SCpnt); status = PENDING; break; } break; case CONDITION_GOOD: case INTERMEDIATE_GOOD: case INTERMEDIATE_C_GOOD: break; case BUSY: update_timeout(SCpnt, oldto); status = REDO; break; case RESERVATION_CONFLICT: printk("scsi%d : RESERVATION CONFLICT performing reset.\n", SCpnt->host->host_no); reset(SCpnt); return; #if 0 exit = DRIVER_SOFT | SUGGEST_ABORT; status = MAYREDO; break; #endif default: printk ("Internal error %s %d \n" "status byte = %d \n", __FILE__, __LINE__, status_byte(result)); } break; default: panic("scsi: unsupported message byte %d received\n", msg_byte(result)); } break; case DID_TIME_OUT: #ifdef DEBUG printk("Host returned DID_TIME_OUT - "); #endif if (SCpnt->flags & WAS_TIMEDOUT) { #ifdef DEBUG printk("Aborting\n"); #endif /* Allow TEST_UNIT_READY and INQUIRY commands to timeout early without causing resets. All other commands should be retried. */ if (SCpnt->cmnd[0] != TEST_UNIT_READY && SCpnt->cmnd[0] != INQUIRY) status = MAYREDO; exit = (DRIVER_TIMEOUT | SUGGEST_ABORT); } else { #ifdef DEBUG printk ("Retrying.\n"); #endif SCpnt->flags |= WAS_TIMEDOUT; SCpnt->internal_timeout &= ~IN_ABORT; status = REDO; } break; case DID_BUS_BUSY: case DID_PARITY: status = REDO; break; case DID_NO_CONNECT: #ifdef DEBUG printk("Couldn't connect.\n"); #endif exit = (DRIVER_HARD | SUGGEST_ABORT); break; case DID_ERROR: status = MAYREDO; exit = (DRIVER_HARD | SUGGEST_ABORT); break; case DID_BAD_TARGET: case DID_ABORT: exit = (DRIVER_INVALID | SUGGEST_ABORT); break; case DID_RESET: if (SCpnt->flags & IS_RESETTING) { SCpnt->flags &= ~IS_RESETTING; status = REDO; break; } if(msg_byte(result) == GOOD && status_byte(result) == CHECK_CONDITION) { switch (check_sense(SCpnt)) { case 0: update_timeout(SCpnt, oldto); status = REDO; break; case SUGGEST_REMAP: case SUGGEST_RETRY: status = MAYREDO; exit = DRIVER_SENSE | SUGGEST_RETRY; break; case SUGGEST_ABORT: status = FINISHED; exit = DRIVER_SENSE | SUGGEST_ABORT; break; case SUGGEST_SENSE: scsi_request_sense (SCpnt); status = PENDING; break; } } else { status=REDO; exit = SUGGEST_RETRY; } break; default : exit = (DRIVER_ERROR | SUGGEST_DIE); } switch (status) { case FINISHED: case PENDING: break; case MAYREDO: #ifdef DEBUG printk("In MAYREDO, allowing %d retries, have %d\n", SCpnt->allowed, SCpnt->retries); #endif if ((++SCpnt->retries) < SCpnt->allowed) { if ((SCpnt->retries >= (SCpnt->allowed >> 1)) && !(jiffies < SCpnt->host->last_reset + MIN_RESET_PERIOD) && !(SCpnt->flags & WAS_RESET)) { printk("scsi%d : resetting for second half of retries.\n", SCpnt->host->host_no); reset(SCpnt); break; } } else { status = FINISHED; break; } /* fall through to REDO */ case REDO: if (SCpnt->flags & WAS_SENSE) scsi_request_sense(SCpnt); else { memcpy ((void *) SCpnt->cmnd, (void*) SCpnt->data_cmnd, sizeof(SCpnt->data_cmnd)); SCpnt->request_buffer = SCpnt->buffer; SCpnt->request_bufflen = SCpnt->bufflen; SCpnt->use_sg = SCpnt->old_use_sg; SCpnt->cmd_len = SCpnt->old_cmd_len; internal_cmnd (SCpnt); } break; default: INTERNAL_ERROR; } if (status == FINISHED) { #ifdef DEBUG printk("Calling done function - at address %08x\n", SCpnt->done); #endif host->host_busy--; /* Indicate that we are free */ if (host->block && host->host_busy == 0) { host_active = NULL; /* For block devices "wake_up" is done in end_scsi_request */ if (MAJOR(SCpnt->request.dev) != SCSI_DISK_MAJOR && MAJOR(SCpnt->request.dev) != SCSI_CDROM_MAJOR) { struct Scsi_Host * next; for (next = host->block; next != host; next = next->block) wake_up(&next->host_wait); } } wake_up(&host->host_wait); SCpnt->result = result | ((exit & 0xff) << 24); SCpnt->use_sg = SCpnt->old_use_sg; SCpnt->cmd_len = SCpnt->old_cmd_len; SCpnt->done (SCpnt); } #undef FINISHED #undef REDO #undef MAYREDO #undef PENDING } /* The scsi_abort function interfaces with the abort() function of the host we are aborting, and causes the current command to not complete. The caller should deal with any error messages or status returned on the next call. This will not be called reentrantly for a given host. */ /* Since we're nice guys and specified that abort() and reset() can be non-reentrant. The internal_timeout flags are used for this. */ int scsi_abort (Scsi_Cmnd * SCpnt, int why) { int oldto; unsigned long flags; struct Scsi_Host * host = SCpnt->host; while(1) { save_flags(flags); cli(); /* * Protect against races here. If the command is done, or we are * on a different command forget it. */ if (SCpnt->serial_number != SCpnt->serial_number_at_timeout) { restore_flags(flags); return 0; } if (SCpnt->internal_timeout & IN_ABORT) { restore_flags(flags); while (SCpnt->internal_timeout & IN_ABORT) barrier(); } else { SCpnt->internal_timeout |= IN_ABORT; oldto = update_timeout(SCpnt, ABORT_TIMEOUT); if ((SCpnt->flags & IS_RESETTING) && SCpnt->device->soft_reset) { /* OK, this command must have died when we did the reset. The device itself must have lied. */ printk("Stale command on %d:%d appears to have died when" " the bus was reset\n", SCpnt->target, SCpnt->lun); } restore_flags(flags); if (!host->host_busy) { SCpnt->internal_timeout &= ~IN_ABORT; update_timeout(SCpnt, oldto); return 0; } printk("scsi : aborting command due to timeout : pid %lu, scsi%d, id %d, lun %d ", SCpnt->pid, SCpnt->host->host_no, (int) SCpnt->target, (int) SCpnt->lun); print_command (SCpnt->cmnd); if (SCpnt->serial_number != SCpnt->serial_number_at_timeout) return 0; SCpnt->abort_reason = why; switch(host->hostt->abort(SCpnt)) { /* We do not know how to abort. Try waiting another time increment and see if this helps. Set the WAS_TIMEDOUT flag set so we do not try this twice */ case SCSI_ABORT_BUSY: /* Tough call - returning 1 from this is too severe */ case SCSI_ABORT_SNOOZE: if(why == DID_TIME_OUT) { save_flags(flags); cli(); SCpnt->internal_timeout &= ~IN_ABORT; if(SCpnt->flags & WAS_TIMEDOUT) { restore_flags(flags); return 1; /* Indicate we cannot handle this. We drop down into the reset handler and try again */ } else { SCpnt->flags |= WAS_TIMEDOUT; oldto = SCpnt->timeout_per_command; update_timeout(SCpnt, oldto); } restore_flags(flags); } return 0; case SCSI_ABORT_PENDING: if(why != DID_TIME_OUT) { save_flags(flags); cli(); update_timeout(SCpnt, oldto); restore_flags(flags); } return 0; case SCSI_ABORT_SUCCESS: /* We should have already aborted this one. No need to adjust timeout */ SCpnt->internal_timeout &= ~IN_ABORT; update_timeout(SCpnt, 0); return 0; case SCSI_ABORT_NOT_RUNNING: return 0; case SCSI_ABORT_ERROR: default: SCpnt->internal_timeout &= ~IN_ABORT; return 1; } } } } int scsi_reset (Scsi_Cmnd * SCpnt, unsigned int reset_flags) { int temp, oldto; unsigned long flags; Scsi_Cmnd * SCpnt1; struct Scsi_Host * host = SCpnt->host; #ifdef DEBUG printk("Danger Will Robinson! - SCSI bus for host %d is being reset.\n",host->host_no); #endif while (1) { save_flags(flags); cli(); /* * Protect against races here. If the command is done, or we * are on a different command forget it. */ if (reset_flags & SCSI_RESET_ASYNCHRONOUS) if (SCpnt->serial_number != SCpnt->serial_number_at_timeout) { restore_flags(flags); return 0; } if (SCpnt->internal_timeout & IN_RESET) { restore_flags(flags); while (SCpnt->internal_timeout & IN_RESET) barrier(); } else { SCpnt->internal_timeout |= IN_RESET; oldto = update_timeout(SCpnt, RESET_TIMEOUT); if (host->host_busy) { restore_flags(flags); SCpnt1 = host->host_queue; while(SCpnt1) { if (SCpnt1->request.dev > 0) { #if 0 if (!(SCpnt1->flags & IS_RESETTING) && !(SCpnt1->internal_timeout & IN_ABORT)) scsi_abort(SCpnt1, DID_RESET); #endif SCpnt1->flags |= IS_RESETTING; } SCpnt1 = SCpnt1->next; } host->last_reset = jiffies; temp = host->hostt->reset(SCpnt, reset_flags); host->last_reset = jiffies; } else { if (!host->block) host->host_busy++; restore_flags(flags); host->last_reset = jiffies; temp = host->hostt->reset(SCpnt, reset_flags); host->last_reset = jiffies; if (!host->block) host->host_busy--; } #ifdef DEBUG printk("scsi reset function returned %d\n", temp); #endif switch(temp) { case SCSI_RESET_SUCCESS: save_flags(flags); cli(); SCpnt->internal_timeout &= ~IN_RESET; update_timeout(SCpnt, oldto); restore_flags(flags); return 0; case SCSI_RESET_NOT_RUNNING: case SCSI_RESET_PENDING: return 0; case SCSI_RESET_PUNT: case SCSI_RESET_WAKEUP: SCpnt->internal_timeout &= ~IN_RESET; scsi_request_sense (SCpnt); return 0; case SCSI_RESET_SNOOZE: /* In this case, we set the timeout field to 0 so that this command does not time out any more, and we return 1 so that we get a message on the screen. */ save_flags(flags); cli(); SCpnt->internal_timeout &= ~IN_RESET; update_timeout(SCpnt, 0); restore_flags(flags); /* If you snooze, you lose... */ case SCSI_RESET_ERROR: default: return 1; } return temp; } } } static void scsi_main_timeout(void) { /* We must not enter update_timeout with a timeout condition still pending. */ int timed_out; unsigned long flags; struct Scsi_Host * host; Scsi_Cmnd * SCpnt = NULL; save_flags(flags); cli(); update_timeout(NULL, 0); /* Find all timers such that they have 0 or negative (shouldn't happen) time remaining on them. */ timed_out = 0; for (host = scsi_hostlist; host; host = host->next) { for (SCpnt = host->host_queue; SCpnt; SCpnt = SCpnt->next) if (SCpnt->timeout == -1) { SCpnt->timeout = 0; SCpnt->serial_number_at_timeout = SCpnt->serial_number; ++timed_out; } } if (timed_out > 0) { for (host = scsi_hostlist; host; host = host->next) { for (SCpnt = host->host_queue; SCpnt; SCpnt = SCpnt->next) if (SCpnt->serial_number_at_timeout > 0 && SCpnt->serial_number_at_timeout == SCpnt->serial_number) { restore_flags(flags); scsi_times_out(SCpnt); SCpnt->serial_number_at_timeout = 0; cli(); } } } restore_flags(flags); } /* The strategy is to cause the timer code to call scsi_times_out() when the soonest timeout is pending. The arguments are used when we are queueing a new command, because we do not want to subtract the time used from this time, but when we set the timer, we want to take this value into account. */ static int update_timeout(Scsi_Cmnd * SCset, int timeout) { unsigned int least, used; unsigned int oldto; unsigned long flags; struct Scsi_Host * host; Scsi_Cmnd * SCpnt = NULL; save_flags(flags); cli(); oldto = 0; /* * This routine can be a performance bottleneck under high loads, since * it is called twice per SCSI operation: once when internal_cmnd is * called, and again when scsi_done completes the command. To limit * the load this routine can cause, we shortcut processing if no clock * ticks have occurred since the last time it was called. */ if (jiffies == time_start && timer_table[SCSI_TIMER].expires > 0) { if(SCset){ oldto = SCset->timeout; SCset->timeout = timeout; if (timeout > 0 && jiffies + timeout < timer_table[SCSI_TIMER].expires) timer_table[SCSI_TIMER].expires = jiffies + timeout; } restore_flags(flags); return oldto; } /* Figure out how much time has passed since the last time the timeouts were updated */ used = (time_start) ? (jiffies - time_start) : 0; /* Find out what is due to timeout soonest, and adjust all timeouts for the amount of time that has passed since the last time we called update_timeout. */ if(SCset){ oldto = SCset->timeout - used; SCset->timeout = timeout; } least = 0xffffffff; for(host = scsi_hostlist; host; host = host->next) for(SCpnt = host->host_queue; SCpnt; SCpnt = SCpnt->next) if (SCpnt->timeout > 0) { if (SCpnt != SCset) SCpnt->timeout -= used; if(SCpnt->timeout <= 0) SCpnt->timeout = -1; if(SCpnt->timeout > 0 && SCpnt->timeout < least) least = SCpnt->timeout; } /* If something is due to timeout again, then we will set the next timeout interrupt to occur. Otherwise, timeouts are disabled. */ if (least != 0xffffffff) { time_start = jiffies; timer_table[SCSI_TIMER].expires = (time_elapsed = least) + jiffies; timer_active |= 1 << SCSI_TIMER; } else { timer_table[SCSI_TIMER].expires = time_start = time_elapsed = 0; timer_active &= ~(1 << SCSI_TIMER); } restore_flags(flags); return oldto; } static unsigned char * dma_malloc_freelist = NULL; static int scsi_need_isa_bounce_buffers; static unsigned int dma_sectors = 0; unsigned int dma_free_sectors = 0; unsigned int need_isa_buffer = 0; static unsigned char ** dma_malloc_pages = NULL; #define MALLOC_PAGEBITS 12 static int scsi_register_host(Scsi_Host_Template *); static void scsi_unregister_host(Scsi_Host_Template *); void *scsi_malloc(unsigned int len) { unsigned int nbits, mask; unsigned long flags; int i, j; if((len & 0x1ff) || len > (1<> 9; mask = (1 << nbits) - 1; for(i=0;i < (dma_sectors >> (MALLOC_PAGEBITS - 9)); i++) for(j=0; j<=(sizeof(*dma_malloc_freelist) * 8) - nbits; j++){ if ((dma_malloc_freelist[i] & (mask << j)) == 0){ dma_malloc_freelist[i] |= (mask << j); restore_flags(flags); dma_free_sectors -= nbits; #ifdef DEBUG printk("SMalloc: %d %x ",len, dma_malloc_pages[i] + (j << 9)); #endif return (void *) ((unsigned long) dma_malloc_pages[i] + (j << 9)); } } restore_flags(flags); return NULL; /* Nope. No more */ } int scsi_free(void *obj, unsigned int len) { int page, sector, nbits, mask; long offset; unsigned long flags; #ifdef DEBUG printk("Sfree %x %d\n",obj, len); #endif offset = -1; for (page = 0; page < (dma_sectors >> 3); page++) if ((unsigned long) obj >= (unsigned long) dma_malloc_pages[page] && (unsigned long) obj < (unsigned long) dma_malloc_pages[page] + (1 << MALLOC_PAGEBITS)) { offset = ((unsigned long) obj) - ((unsigned long)dma_malloc_pages[page]); break; } if (page == (dma_sectors >> 3)) panic("Bad offset"); sector = offset >> 9; if(sector >= dma_sectors) panic ("Bad page"); sector = (offset >> 9) & (sizeof(*dma_malloc_freelist) * 8 - 1); nbits = len >> 9; mask = (1 << nbits) - 1; if ((mask << sector) > 0xffff) panic ("Bad memory alignment"); save_flags(flags); cli(); if((dma_malloc_freelist[page] & (mask << sector)) != (mask< scsi_memory_upper_value) { retval = 0; printk("scsi_init_malloc: no more statically allocated memory.\n"); } else { retval = scsi_init_memory_start; scsi_init_memory_start += size; } } memset((void *) retval, 0, size); return (void *) retval; } void scsi_init_free(char * ptr, unsigned int size) { /* We need to compare addresses to see whether this was kmalloc'd or not */ if((unsigned long) ptr >= scsi_init_memory_start || (unsigned long) ptr < scsi_memory_lower_value) kfree(ptr); else { size = (size + 15) & ~15; /* Use the same alignment as scsi_init_malloc() */ if(((unsigned long) ptr) + size == scsi_init_memory_start) scsi_init_memory_start = (unsigned long) ptr; } } /* scsi_dev_init() is our initialization routine, which in turn calls host initialization, bus scanning, and sd/st initialization routines. It should be called from main(). */ unsigned long scsi_dev_init (unsigned long memory_start,unsigned long memory_end) { struct Scsi_Host * host = NULL; Scsi_Device * SDpnt; struct Scsi_Host * shpnt; struct Scsi_Device_Template * sdtpnt; Scsi_Cmnd * SCpnt; int j, i; #ifdef FOO_ON_YOU return; #endif /* Init a few things so we can "malloc" memory. */ scsi_loadable_module_flag = 0; /* Align everything on 16-byte boundaries. */ scsi_init_memory_start = (memory_start + 15) & ~ 15; scsi_memory_lower_value = scsi_init_memory_start; timer_table[SCSI_TIMER].fn = scsi_main_timeout; timer_table[SCSI_TIMER].expires = 0; /* initialize all hosts */ scsi_init(); scsi_devices = (Scsi_Device *) NULL; for (shpnt = scsi_hostlist; shpnt; shpnt = shpnt->next) { scan_scsis(shpnt); /* scan for scsi devices */ if (shpnt->select_queue_depths != NULL) (shpnt->select_queue_depths)(shpnt, scsi_devices); } printk("scsi : detected "); for (sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if (sdtpnt->dev_noticed && sdtpnt->name) printk("%d SCSI %s%s ", sdtpnt->dev_noticed, sdtpnt->name, (sdtpnt->dev_noticed != 1) ? "s" : ""); printk("total.\n"); for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->init && sdtpnt->dev_noticed) (*sdtpnt->init)(); for (SDpnt=scsi_devices; SDpnt; SDpnt = SDpnt->next) { SDpnt->scsi_request_fn = NULL; for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->attach) (*sdtpnt->attach)(SDpnt); if(SDpnt->attached){ host = SDpnt->host; if (SDpnt->queue_depth == 0) SDpnt->queue_depth = host->cmd_per_lun; SDpnt->device_queue = NULL; for(j=0;jqueue_depth;j++){ SCpnt = (Scsi_Cmnd *) scsi_init_malloc(sizeof(Scsi_Cmnd), GFP_ATOMIC); SCpnt->host = host; SCpnt->device = SDpnt; SCpnt->target = SDpnt->id; SCpnt->lun = SDpnt->lun; SCpnt->request.dev = -1; /* Mark not busy */ SCpnt->use_sg = 0; SCpnt->old_use_sg = 0; SCpnt->old_cmd_len = 0; SCpnt->timeout = 0; SCpnt->underflow = 0; SCpnt->transfersize = 0; SCpnt->host_scribble = NULL; if(host->host_queue) host->host_queue->prev = SCpnt; SCpnt->next = host->host_queue; SCpnt->prev = NULL; host->host_queue = SCpnt; SCpnt->device_next = SDpnt->device_queue; SDpnt->device_queue = SCpnt; } } } if (scsi_devicelist) dma_sectors = 16; /* Base value we use */ if (memory_end-1 > ISA_DMA_THRESHOLD) scsi_need_isa_bounce_buffers = 1; else scsi_need_isa_bounce_buffers = 0; for (SDpnt=scsi_devices; SDpnt; SDpnt = SDpnt->next) { host = SDpnt->host; if(SDpnt->type != TYPE_TAPE) dma_sectors += ((host->sg_tablesize * sizeof(struct scatterlist) + 511) >> 9) * SDpnt->queue_depth; if(host->unchecked_isa_dma && memory_end - 1 > ISA_DMA_THRESHOLD && SDpnt->type != TYPE_TAPE) { dma_sectors += (PAGE_SIZE >> 9) * host->sg_tablesize * SDpnt->queue_depth; need_isa_buffer++; } } dma_sectors = (dma_sectors + 15) & 0xfff0; dma_free_sectors = dma_sectors; /* This must be a multiple of 16 */ dma_malloc_freelist = (unsigned char *) scsi_init_malloc(dma_sectors >> 3, GFP_ATOMIC); memset(dma_malloc_freelist, 0, dma_sectors >> 3); dma_malloc_pages = (unsigned char **) scsi_init_malloc(dma_sectors >> 1, GFP_ATOMIC); memset(dma_malloc_pages, 0, dma_sectors >> 1); for(i=0; i< dma_sectors >> 3; i++) dma_malloc_pages[i] = (unsigned char *) scsi_init_malloc(PAGE_SIZE, GFP_ATOMIC | GFP_DMA); /* OK, now we finish the initialization by doing spin-up, read capacity, etc, etc */ for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->finish && sdtpnt->nr_dev) (*sdtpnt->finish)(); scsi_loadable_module_flag = 1; /* This allocates statically some extra memory to be used for modules, until the kmalloc problem is fixed (DB) */ #if defined(USE_STATIC_SCSI_MEMORY) scsi_memory_upper_value = scsi_init_memory_start + 256 * 1024; printk ("SCSI memory: total %ldKb, used %ldKb, free %ldKb.\n", (scsi_memory_upper_value - scsi_memory_lower_value) / 1024, (scsi_init_memory_start - scsi_memory_lower_value) / 1024, (scsi_memory_upper_value - scsi_init_memory_start) / 1024); return scsi_memory_upper_value; #else return scsi_init_memory_start; #endif } static void print_inquiry(unsigned char *data) { int i; printk(" Vendor: "); for (i = 8; i < 16; i++) { if (data[i] >= 0x20 && i < data[4] + 5) printk("%c", data[i]); else printk(" "); } printk(" Model: "); for (i = 16; i < 32; i++) { if (data[i] >= 0x20 && i < data[4] + 5) printk("%c", data[i]); else printk(" "); } printk(" Rev: "); for (i = 32; i < 36; i++) { if (data[i] >= 0x20 && i < data[4] + 5) printk("%c", data[i]); else printk(" "); } printk("\n"); i = data[0] & 0x1f; printk(" Type: %s ", i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] : "Unknown " ); printk(" ANSI SCSI revision: %02x", data[2] & 0x07); if ((data[2] & 0x07) == 1 && (data[3] & 0x0f) == 1) printk(" CCS\n"); else printk("\n"); } /* * This entry point should be called by a loadable module if it is trying * add a low level scsi driver to the system. */ static int scsi_register_host(Scsi_Host_Template * tpnt) { int pcount; struct Scsi_Host * shpnt; struct Scsi_Host * host = NULL; unsigned long flags; Scsi_Device * SDpnt; Scsi_Cmnd * SCpnt; struct Scsi_Device_Template * sdtpnt; int j, i; const char * name; if (tpnt->next || !tpnt->detect) return 1; /* Must be already loaded, or no detect routine available */ pcount = next_scsi_host; if ((tpnt->present = tpnt->detect(tpnt))) { if(pcount == next_scsi_host) { if(tpnt->present > 1) { printk("Failure to register low-level scsi driver"); scsi_unregister_host(tpnt); return 1; } /* The low-level driver failed to register a driver. We can do this now. */ scsi_register(tpnt,0); } tpnt->next = scsi_hosts; /* Add to the linked list */ scsi_hosts = tpnt; for(shpnt=scsi_hostlist; shpnt; shpnt = shpnt->next) if(shpnt->hostt == tpnt) { if(tpnt->info) name = tpnt->info(shpnt); else name = tpnt->name; printk ("scsi%d : %s\n", /* And print a little message */ shpnt->host_no, name); } printk ("scsi : %d host%s.\n", next_scsi_host, (next_scsi_host == 1) ? "" : "s"); scsi_make_blocked_list(); /* The next step is to call scan_scsis here. This generates the Scsi_Devices entries */ for(shpnt=scsi_hostlist; shpnt; shpnt = shpnt->next) if(shpnt->hostt == tpnt) scan_scsis(shpnt); for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->init && sdtpnt->dev_noticed) (*sdtpnt->init)(); /* Next we create the Scsi_Cmnd structures for this host */ for(SDpnt = scsi_devices; SDpnt; SDpnt = SDpnt->next) if(SDpnt->host->hostt == tpnt) { for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->attach) (*sdtpnt->attach)(SDpnt); if(SDpnt->attached){ host = SDpnt->host; if (SDpnt->queue_depth == 0) SDpnt->queue_depth = host->cmd_per_lun; SDpnt->device_queue = NULL; for(j=0;jqueue_depth;j++){ SCpnt = (Scsi_Cmnd *) scsi_init_malloc(sizeof(Scsi_Cmnd), GFP_ATOMIC); SCpnt->host = SDpnt->host; SCpnt->device = SDpnt; SCpnt->target = SDpnt->id; SCpnt->lun = SDpnt->lun; SCpnt->request.dev = -1; /* Mark not busy */ SCpnt->request.sem = NULL; SCpnt->use_sg = 0; SCpnt->old_use_sg = 0; SCpnt->underflow = 0; SCpnt->timeout = 0; SCpnt->transfersize = 0; SCpnt->serial_number = 0; SCpnt->serial_number_at_timeout = 0; SCpnt->host_scribble = NULL; host = SDpnt->host; SCpnt->next = host->host_queue; SCpnt->prev = NULL; host->host_queue = SCpnt; if(host->host_queue) host->host_queue->prev = SCpnt; SCpnt->device_next = SDpnt->device_queue; SDpnt->device_queue = SCpnt; } } } /* Next, check to see if we need to extend the DMA buffer pool */ { unsigned char * new_dma_malloc_freelist = NULL; unsigned int new_dma_sectors = 0; unsigned int new_need_isa_buffer = 0; unsigned char ** new_dma_malloc_pages = NULL; if (scsi_devicelist) new_dma_sectors = 16; /* Base value we use */ for (SDpnt=scsi_devices; SDpnt; SDpnt = SDpnt->next) { host = SDpnt->host; if(SDpnt->type != TYPE_TAPE) new_dma_sectors += ((host->sg_tablesize * sizeof(struct scatterlist) + 511) >> 9) * SDpnt->queue_depth; if(host->unchecked_isa_dma && scsi_need_isa_bounce_buffers && SDpnt->type != TYPE_TAPE) { new_dma_sectors += (PAGE_SIZE >> 9) * host->sg_tablesize * SDpnt->queue_depth; new_need_isa_buffer++; } } new_dma_sectors = (new_dma_sectors + 15) & 0xfff0; new_dma_malloc_freelist = (unsigned char *) scsi_init_malloc(new_dma_sectors >> 3, GFP_ATOMIC); memset(new_dma_malloc_freelist, 0, new_dma_sectors >> 3); new_dma_malloc_pages = (unsigned char **) scsi_init_malloc(new_dma_sectors >> 1, GFP_ATOMIC); memset(new_dma_malloc_pages, 0, new_dma_sectors >> 1); for(i=dma_sectors >> 3; i< new_dma_sectors >> 3; i++) new_dma_malloc_pages[i] = (unsigned char *) scsi_init_malloc(PAGE_SIZE, GFP_ATOMIC | GFP_DMA); /* When we dick with the actual DMA list, we need to protect things */ save_flags(flags); cli(); memcpy(new_dma_malloc_freelist, dma_malloc_freelist, dma_sectors >> 3); scsi_init_free(dma_malloc_freelist, dma_sectors>>3); dma_malloc_freelist = new_dma_malloc_freelist; memcpy(new_dma_malloc_pages, dma_malloc_pages, dma_sectors >> 1); scsi_init_free((char *) dma_malloc_pages, dma_sectors>>1); dma_free_sectors += new_dma_sectors - dma_sectors; dma_malloc_pages = new_dma_malloc_pages; dma_sectors = new_dma_sectors; need_isa_buffer = new_need_isa_buffer; restore_flags(flags); } /* This does any final handling that is required. */ for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->finish && sdtpnt->nr_dev) (*sdtpnt->finish)(); } #if defined(USE_STATIC_SCSI_MEMORY) printk ("SCSI memory: total %ldKb, used %ldKb, free %ldKb.\n", (scsi_memory_upper_value - scsi_memory_lower_value) / 1024, (scsi_init_memory_start - scsi_memory_lower_value) / 1024, (scsi_memory_upper_value - scsi_init_memory_start) / 1024); #endif return 0; } /* * Similarly, this entry point should be called by a loadable module if it * is trying to remove a low level scsi driver from the system. */ static void scsi_unregister_host(Scsi_Host_Template * tpnt) { Scsi_Host_Template * SHT, *SHTp; Scsi_Device *sdpnt, * sdppnt, * sdpnt1; Scsi_Cmnd * SCpnt; unsigned long flags; struct Scsi_Device_Template * sdtpnt; struct Scsi_Host * shpnt, *sh1; int pcount; /* First verify that this host adapter is completely free with no pending commands */ for(sdpnt = scsi_devices; sdpnt; sdpnt = sdpnt->next) if(sdpnt->host->hostt == tpnt && sdpnt->host->hostt->usage_count && *sdpnt->host->hostt->usage_count) return; for(shpnt = scsi_hostlist; shpnt; shpnt = shpnt->next) { if (shpnt->hostt != tpnt) continue; for(SCpnt = shpnt->host_queue; SCpnt; SCpnt = SCpnt->next) { save_flags(flags); cli(); if(SCpnt->request.dev != -1) { restore_flags(flags); for(SCpnt = shpnt->host_queue; SCpnt; SCpnt = SCpnt->next) if(SCpnt->request.dev == 0xffe0) SCpnt->request.dev = -1; printk("Device busy???\n"); return; } SCpnt->request.dev = 0xffe0; /* Mark as busy */ restore_flags(flags); } } /* Next we detach the high level drivers from the Scsi_Device structures */ for(sdpnt = scsi_devices; sdpnt; sdpnt = sdpnt->next) if(sdpnt->host->hostt == tpnt) { for(sdtpnt = scsi_devicelist; sdtpnt; sdtpnt = sdtpnt->next) if(sdtpnt->detach) (*sdtpnt->detach)(sdpnt); /* If something still attached, punt */ if (sdpnt->attached) { printk("Attached usage count = %d\n", sdpnt->attached); return; } } /* Next we free up the Scsi_Cmnd structures for this host */ for(sdpnt = scsi_devices; sdpnt; sdpnt = sdpnt->next) if(sdpnt->host->hostt == tpnt) while (sdpnt->host->host_queue) { SCpnt = sdpnt->host->host_queue->next; scsi_init_free((char *) sdpnt->host->host_queue, sizeof(Scsi_Cmnd)); sdpnt->host->host_queue = SCpnt; if (SCpnt) SCpnt->prev = NULL; } /* Next free up the Scsi_Device structures for this host */ sdppnt = NULL; for(sdpnt = scsi_devices; sdpnt; sdpnt = sdpnt1) { sdpnt1 = sdpnt->next; if (sdpnt->host->hostt == tpnt) { if (sdppnt) sdppnt->next = sdpnt->next; else scsi_devices = sdpnt->next; scsi_init_free((char *) sdpnt, sizeof (Scsi_Device)); } else sdppnt = sdpnt; } /* Next we go through and remove the instances of the individual hosts that were detected */ shpnt = scsi_hostlist; while(shpnt) { sh1 = shpnt->next; if(shpnt->hostt == tpnt) { if(shpnt->loaded_as_module) { pcount = next_scsi_host; if(tpnt->release) (*tpnt->release)(shpnt); else { /* This is the default case for the release function. It should do the right thing for most correctly written host adapters. */ if (shpnt->irq) free_irq(shpnt->irq); if (shpnt->dma_channel != 0xff) free_dma(shpnt->dma_channel); if (shpnt->io_port && shpnt->n_io_port) release_region(shpnt->io_port, shpnt->n_io_port); } if(pcount == next_scsi_host) scsi_unregister(shpnt); tpnt->present--; } } shpnt = sh1; } printk ("scsi : %d host%s.\n", next_scsi_host, (next_scsi_host == 1) ? "" : "s"); #if defined(USE_STATIC_SCSI_MEMORY) printk ("SCSI memory: total %ldKb, used %ldKb, free %ldKb.\n", (scsi_memory_upper_value - scsi_memory_lower_value) / 1024, (scsi_init_memory_start - scsi_memory_lower_value) / 1024, (scsi_memory_upper_value - scsi_init_memory_start) / 1024); #endif scsi_make_blocked_list(); /* There were some hosts that were loaded at boot time, so we cannot do any more than this */ if (tpnt->present) return; /* OK, this is the very last step. Remove this host adapter from the linked list. */ for(SHTp=NULL, SHT=scsi_hosts; SHT; SHTp=SHT, SHT=SHT->next) if(SHT == tpnt) { if(SHTp) SHTp->next = SHT->next; else scsi_hosts = SHT->next; SHT->next = NULL; break; } } int scsi_register_module(int module_type, void * ptr) { switch(module_type){ case MODULE_SCSI_HA: return scsi_register_host((Scsi_Host_Template *) ptr); /* The rest of these are not yet implemented */ /* Load constants.o */ case MODULE_SCSI_CONST: /* Load specialized ioctl handler for some device. Intended for cdroms that have non-SCSI2 audio command sets. */ case MODULE_SCSI_IOCTL: /* Load upper level device handler of some kind */ case MODULE_SCSI_DEV: default: return 1; } } void scsi_unregister_module(int module_type, void * ptr) { switch(module_type) { case MODULE_SCSI_HA: scsi_unregister_host((Scsi_Host_Template *) ptr); break; /* The rest of these are not yet implemented. */ case MODULE_SCSI_CONST: case MODULE_SCSI_IOCTL: case MODULE_SCSI_DEV: default: } return; } #ifdef DEBUG_TIMEOUT static void scsi_dump_status(void) { int i; struct Scsi_Host * shpnt; Scsi_Cmnd * SCpnt; printk("Dump of scsi parameters:\n"); i = 0; for(shpnt = scsi_hostlist; shpnt; shpnt = shpnt->next) for(SCpnt=shpnt->host_queue; SCpnt; SCpnt = SCpnt->next) { /* (0) 0:0:0 (802 123434 8 8 0) (3 3 2) (%d %d %d) %d %x */ printk("(%d) %d:%d:%d (%4.4x %ld %ld %ld %ld) (%d %d %x) (%d %d %d) %x %x %x\n", i++, SCpnt->host->host_no, SCpnt->target, SCpnt->lun, SCpnt->request.dev, SCpnt->request.sector, SCpnt->request.nr_sectors, SCpnt->request.current_nr_sectors, SCpnt->use_sg, SCpnt->retries, SCpnt->allowed, SCpnt->flags, SCpnt->timeout_per_command, SCpnt->timeout, SCpnt->internal_timeout, SCpnt->cmnd[0], SCpnt->sense_buffer[2], SCpnt->result); } printk("wait_for_request = %p\n", wait_for_request); /* Now dump the request lists for each block device */ printk("Dump of pending block device requests\n"); for(i=0; idev, req->cmd, req->sector, req->nr_sectors, req->current_nr_sectors); req = req->next; } printk("\n"); } } #endif /* * Overrides for Emacs so that we follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-indent-level: 8 * c-brace-imaginary-offset: 0 * c-brace-offset: -8 * c-argdecl-indent: 8 * c-label-offset: -8 * c-continued-statement-offset: 8 * c-continued-brace-offset: 0 * End: */