#ifndef _ALPHA_BITOPS_H #define _ALPHA_BITOPS_H /* * Copyright 1994, Linus Torvalds. */ /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1). */ extern __inline__ unsigned long set_bit(unsigned long nr, void * addr) { unsigned long oldbit; unsigned long temp; __asm__ __volatile__( "\n1:\t" "ldq_l %0,%1\n\t" "and %0,%3,%2\n\t" "bne %2,2f\n\t" "xor %0,%3,%0\n\t" "stq_c %0,%1\n\t" "beq %0,1b\n" "2:" :"=&r" (temp), "=m" (((unsigned long *) addr)[nr >> 6]), "=&r" (oldbit) :"r" (1UL << (nr & 63)), "m" (((unsigned long *) addr)[nr >> 6])); return oldbit != 0; } extern __inline__ unsigned long clear_bit(unsigned long nr, void * addr) { unsigned long oldbit; unsigned long temp; __asm__ __volatile__( "\n1:\t" "ldq_l %0,%1\n\t" "and %0,%3,%2\n\t" "beq %2,2f\n\t" "xor %0,%3,%0\n\t" "stq_c %0,%1\n\t" "beq %0,1b\n" "2:" :"=&r" (temp), "=m" (((unsigned long *) addr)[nr >> 6]), "=&r" (oldbit) :"r" (1UL << (nr & 63)), "m" (((unsigned long *) addr)[nr >> 6])); return oldbit != 0; } extern __inline__ unsigned long change_bit(unsigned long nr, void * addr) { unsigned long oldbit; unsigned long temp; __asm__ __volatile__( "\n1:\t" "ldq_l %0,%1\n\t" "and %0,%3,%2\n\t" "xor %0,%3,%0\n\t" "stq_c %0,%1\n\t" "beq %0,1b\n" :"=&r" (temp), "=m" (((unsigned long *) addr)[nr >> 6]), "=&r" (oldbit) :"r" (1UL << (nr & 63)), "m" (((unsigned long *) addr)[nr >> 6])); return oldbit != 0; } extern __inline__ unsigned long test_bit(int nr, void * addr) { return 1UL & (((unsigned long *) addr)[nr >> 6] >> (nr & 63)); } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. * * This uses the cmpbge insn to check which byte contains the zero. * I don't know if that's actually a good idea, but it's fun and the * resulting LBS tests should be natural on the alpha.. Besides, I'm * just teaching myself the asm of the alpha anyway. */ extern inline unsigned long ffz(unsigned long word) { unsigned long result = 0; unsigned long tmp; __asm__("cmpbge %1,%0,%0" :"=r" (tmp) :"r" (word), "0" (~0UL)); while (tmp & 1) { word >>= 8; tmp >>= 1; result += 8; } while (word & 1) { result++; word >>= 1; } return result; } /* * Find next zero bit in a bitmap reasonably efficiently.. */ extern inline unsigned long find_next_zero_bit(void * addr, unsigned long size, unsigned long offset) { unsigned long * p = ((unsigned long *) addr) + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (64-offset); if (size < 64) goto found_first; if (~tmp) goto found_middle; size -= 64; result += 64; } while (size & ~63UL) { if (~(tmp = *(p++))) goto found_middle; result += 64; size -= 64; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } /* * The optimizer actually does good code for this case.. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #endif /* _ALPHA_BITOPS_H */