#ifndef _SPARC_PGTABLE_H #define _SPARC_PGTABLE_H /* asm-sparc/pgtable.h: Defines and functions used to work * with Sparc page tables. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 18 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 18 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PGDIR_ALIGN(addr) (((addr)+PGDIR_SIZE-1)&PGDIR_MASK) /* * Just following the i386 lead, because it works on the Sparc sun4c * machines. Two-level, therefore there is no real PMD. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 /* the no. of pointers that fit on a page: this will go away */ #define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*)) /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) (TASK_SIZE + (unsigned long)(x)) /* * Sparc page table fields. */ #define _PAGE_VALID 0x80000000 /* valid page */ #define _PAGE_WRITE 0x40000000 /* can be written to */ #define _PAGE_PRIV 0x20000000 /* bit to signify privileged page */ #define _PAGE_NOCACHE 0x10000000 /* non-cacheable page */ #define _PAGE_REF 0x02000000 /* Page has been accessed/referenced */ #define _PAGE_DIRTY 0x01000000 /* Page has been modified, is dirty */ #define _PAGE_COW 0x00800000 /* COW page, hardware ignores this bit (untested) */ /* Sparc sun4c mmu has only a writable bit. Thus if a page is valid it can be * read in a load, and executed as code automatically. Although, the memory fault * hardware does make a distinction between date-read faults and insn-read faults * which is determined by which trap happened plus magic sync/async fault register * values which must be checked in the actual fault handler. */ /* We want the swapper not to swap out page tables, thus dirty and writable * so that the kernel can change the entries as needed. Also valid for * obvious reasons. */ #define _PAGE_TABLE (_PAGE_VALID | _PAGE_WRITE | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_REF | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_VALID | _PAGE_REF) #define PAGE_SHARED __pgprot(_PAGE_VALID | _PAGE_WRITE | _PAGE_REF) #define PAGE_COPY __pgprot(_PAGE_VALID | _PAGE_REF | _PAGE_COW) #define PAGE_READONLY __pgprot(_PAGE_VALID | _PAGE_REF) #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_WRITE | _PAGE_NOCACHE | _PAGE_REF | _PAGE_PRIV) #define PAGE_INVALID __pgprot(_PAGE_PRIV) #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | _PAGE_REF | (x)) /* I define these like the i386 does because the check for text or data fault * is done at trap time by the low level handler. Maybe I can set these bits * then once determined. I leave them like this for now though. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED extern unsigned long pg0[1024]; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); extern unsigned long __zero_page(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE __zero_page() /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* better check this stuff */ /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) #define SIZEOF_PTR_LOG2 2 /* to set the page-dir * * On the Sparc the page segments hold 64 pte's which means 256k/segment. * Therefore there is no global idea of 'the' page directory, although we * make a virtual one in kernel memory so that we can keep the stats on * all the pages since not all can be loaded at once in the mmu. */ #define SET_PAGE_DIR(tsk,pgdir) /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) extern unsigned long high_memory; extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)] > 1; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } extern inline void pte_reuse(pte_t *ptep) { if(!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED)) mem_map[MAP_NR(ptep)]++; } extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE || pmd_val(pmd) > high_memory; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } extern inline int pmd_inuse(pmd_t *pmdp) { return 0; } extern inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = 0; } extern inline void pmd_reuse(pmd_t * pmdp) { } extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~PAGE_MASK) != _PAGE_TABLE || pgd_val(pgd) > high_memory; } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; } extern inline int pgd_inuse(pgd_t *pgdp) { return mem_map[MAP_NR(pgdp)] > 1; } extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } extern inline void pgd_reuse(pgd_t *pgdp) { if (!(mem_map[MAP_NR(pgdp)] & MAP_PAGE_RESERVED)) mem_map[MAP_NR(pgdp)]++; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_REF; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_REF; } extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_VALID; return pte; } extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_VALID; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_REF; return pte; } extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_VALID; return pte; } extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_VALID; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_REF; return pte; } extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } extern inline unsigned long pte_page(pte_t pte) { return pte_val(pte) & PAGE_MASK; } extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd) & PAGE_MASK; } extern inline unsigned long pgd_page(pgd_t pgd) { return pgd_val(pgd) & PAGE_MASK; } extern inline void pgd_set(pgd_t * pgdp, pte_t * ptep) { pgd_val(*pgdp) = _PAGE_TABLE | (unsigned long) ptep; } /* to find an entry in a page-table-directory */ #define PAGE_DIR_OFFSET(tsk,address) \ ((((unsigned long)(address)) >> 22) + (pgd_t *) (tsk)->tss.cr3) /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct task_struct * tsk, unsigned long address) { return (pgd_t *) tsk->tss.cr3 + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ extern inline void pte_free_kernel(pte_t * pte) { mem_map[MAP_NR(pte)] = 1; free_page((unsigned long) pte); } extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page; mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED; return page + address; } pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free_kernel(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pte_free(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page; return page + address; } pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pgd_free(pgd_t *pgd) { free_page((unsigned long) pgd); } extern inline pgd_t *pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } extern pgd_t swapper_pg_dir[1024]; #endif /* !(_SPARC_PGTABLE_H) */