/* * linux/ipc/sem.c * Copyright (C) 1992 Krishna Balasubramanian * Copyright (C) 1995 Eric Schenk, Bruno Haible * * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): * This code underwent a massive rewrite in order to solve some problems * with the original code. In particular the original code failed to * wake up processes that were waiting for semval to go to 0 if the * value went to 0 and was then incremented rapidly enough. In solving * this problem I have also modified the implementation so that it * processes pending operations in a FIFO manner, thus give a guarantee * that processes waiting for a lock on the semaphore won't starve * unless another locking process fails to unlock. * In addition the following two changes in behavior have been introduced: * - The original implementation of semop returned the value * last semaphore element examined on success. This does not * match the manual page specifications, and effectively * allows the user to read the semaphore even if they do not * have read permissions. The implementation now returns 0 * on success as stated in the manual page. * - There is some confusion over whether the set of undo adjustments * to be performed at exit should be done in an atomic manner. * That is, if we are attempting to decrement the semval should we queue * up and wait until we can do so legally? * The original implementation attempted to do this. * The current implementation does not do so. This is because I don't * think it is the right thing (TM) to do, and because I couldn't * see a clean way to get the old behavior with the new design. * The POSIX standard and SVID should be consulted to determine * what behavior is mandated. */ #include #include #include #include #include #include #include #include extern int ipcperms (struct ipc_perm *ipcp, short semflg); static int newary (key_t, int, int); static int findkey (key_t key); static void freeary (int id); static struct semid_ds *semary[SEMMNI]; static int used_sems = 0, used_semids = 0; static struct wait_queue *sem_lock = NULL; static int max_semid = 0; static unsigned short sem_seq = 0; void sem_init (void) { int i; sem_lock = NULL; used_sems = used_semids = max_semid = sem_seq = 0; for (i = 0; i < SEMMNI; i++) semary[i] = (struct semid_ds *) IPC_UNUSED; return; } static int findkey (key_t key) { int id; struct semid_ds *sma; for (id = 0; id <= max_semid; id++) { while ((sma = semary[id]) == IPC_NOID) interruptible_sleep_on (&sem_lock); if (sma == IPC_UNUSED) continue; if (key == sma->sem_perm.key) return id; } return -1; } static int newary (key_t key, int nsems, int semflg) { int id; struct semid_ds *sma; struct ipc_perm *ipcp; int size; if (!nsems) return -EINVAL; if (used_sems + nsems > SEMMNS) return -ENOSPC; for (id = 0; id < SEMMNI; id++) if (semary[id] == IPC_UNUSED) { semary[id] = (struct semid_ds *) IPC_NOID; goto found; } return -ENOSPC; found: size = sizeof (*sma) + nsems * sizeof (struct sem); used_sems += nsems; sma = (struct semid_ds *) kmalloc (size, GFP_KERNEL); if (!sma) { semary[id] = (struct semid_ds *) IPC_UNUSED; used_sems -= nsems; if (sem_lock) wake_up (&sem_lock); return -ENOMEM; } memset (sma, 0, size); sma->sem_base = (struct sem *) &sma[1]; ipcp = &sma->sem_perm; ipcp->mode = (semflg & S_IRWXUGO); ipcp->key = key; ipcp->cuid = ipcp->uid = current->euid; ipcp->gid = ipcp->cgid = current->egid; sma->sem_perm.seq = sem_seq; /* sma->sem_pending = NULL; */ sma->sem_pending_last = &sma->sem_pending; /* sma->undo = NULL; */ sma->sem_nsems = nsems; sma->sem_ctime = CURRENT_TIME; if (id > max_semid) max_semid = id; used_semids++; semary[id] = sma; if (sem_lock) wake_up (&sem_lock); return (unsigned int) sma->sem_perm.seq * SEMMNI + id; } int sys_semget (key_t key, int nsems, int semflg) { int id; struct semid_ds *sma; if (nsems < 0 || nsems > SEMMSL) return -EINVAL; if (key == IPC_PRIVATE) return newary(key, nsems, semflg); if ((id = findkey (key)) == -1) { /* key not used */ if (!(semflg & IPC_CREAT)) return -ENOENT; return newary(key, nsems, semflg); } if (semflg & IPC_CREAT && semflg & IPC_EXCL) return -EEXIST; sma = semary[id]; if (nsems > sma->sem_nsems) return -EINVAL; if (ipcperms(&sma->sem_perm, semflg)) return -EACCES; return (unsigned int) sma->sem_perm.seq * SEMMNI + id; } /* Manage the doubly linked list sma->sem_pending as a FIFO: * insert new queue elements at the tail sma->sem_pending_last. */ static inline void insert_into_queue (struct semid_ds * sma, struct sem_queue * q) { *(q->prev = sma->sem_pending_last) = q; *(sma->sem_pending_last = &q->next) = NULL; } static inline void remove_from_queue (struct semid_ds * sma, struct sem_queue * q) { *(q->prev) = q->next; if (q->next) q->next->prev = q->prev; else /* sma->sem_pending_last == &q->next */ sma->sem_pending_last = q->prev; q->prev = NULL; /* mark as removed */ } /* Determine whether a sequence of semaphore operations would succeed * all at once. Return 0 if yes, 1 if need to sleep, else return error code. */ static int try_semop (struct semid_ds * sma, struct sembuf * sops, int nsops) { int result = 0; int i = 0; while (i < nsops) { struct sembuf * sop = &sops[i]; struct sem * curr = &sma->sem_base[sop->sem_num]; if (sop->sem_op + curr->semval > SEMVMX) { result = -ERANGE; break; } if (!sop->sem_op && curr->semval) { if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1; break; } i++; curr->semval += sop->sem_op; if (curr->semval < 0) { if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1; break; } } while (--i >= 0) { struct sembuf * sop = &sops[i]; struct sem * curr = &sma->sem_base[sop->sem_num]; curr->semval -= sop->sem_op; } return result; } /* Actually perform a sequence of semaphore operations. Atomically. */ /* This assumes that try_semop() already returned 0. */ static int do_semop (struct semid_ds * sma, struct sembuf * sops, int nsops, struct sem_undo * un, int pid) { int i; for (i = 0; i < nsops; i++) { struct sembuf * sop = &sops[i]; struct sem * curr = &sma->sem_base[sop->sem_num]; if (sop->sem_op + curr->semval > SEMVMX) { printk("do_semop: race\n"); break; } if (!sop->sem_op) { if (curr->semval) { printk("do_semop: race\n"); break; } } else { curr->semval += sop->sem_op; if (curr->semval < 0) { printk("do_semop: race\n"); break; } if (sop->sem_flg & SEM_UNDO) un->semadj[sop->sem_num] -= sop->sem_op; } curr->sempid = pid; } sma->sem_otime = CURRENT_TIME; /* Previous implementation returned the last semaphore's semval. * This is wrong because we may not have checked read permission, * only write permission. */ return 0; } /* Go through the pending queue for the indicated semaphore * looking for tasks that can be completed. Keep cycling through * the queue until a pass is made in which no process is woken up. */ static void update_queue (struct semid_ds * sma) { int wokeup, error; struct sem_queue * q; do { wokeup = 0; for (q = sma->sem_pending; q; q = q->next) { error = try_semop(sma, q->sops, q->nsops); /* Does q->sleeper still need to sleep? */ if (error > 0) continue; /* Perform the operations the sleeper was waiting for */ if (!error) error = do_semop(sma, q->sops, q->nsops, q->undo, q->pid); q->status = error; /* Remove it from the queue */ remove_from_queue(sma,q); /* Wake it up */ wake_up_interruptible(&q->sleeper); /* doesn't sleep! */ wokeup++; } } while (wokeup); } /* The following counts are associated to each semaphore: * semncnt number of tasks waiting on semval being nonzero * semzcnt number of tasks waiting on semval being zero * This model assumes that a task waits on exactly one semaphore. * Since semaphore operations are to be performed atomically, tasks actually * wait on a whole sequence of semaphores simultaneously. * The counts we return here are a rough approximation, but still * warrant that semncnt+semzcnt>0 if the task is on the pending queue. */ static int count_semncnt (struct semid_ds * sma, ushort semnum) { int semncnt; struct sem_queue * q; semncnt = 0; for (q = sma->sem_pending; q; q = q->next) { struct sembuf * sops = q->sops; int nsops = q->nsops; int i; for (i = 0; i < nsops; i++) if (sops[i].sem_num == semnum && (sops[i].sem_op < 0) && !(sops[i].sem_flg & IPC_NOWAIT)) semncnt++; } return semncnt; } static int count_semzcnt (struct semid_ds * sma, ushort semnum) { int semzcnt; struct sem_queue * q; semzcnt = 0; for (q = sma->sem_pending; q; q = q->next) { struct sembuf * sops = q->sops; int nsops = q->nsops; int i; for (i = 0; i < nsops; i++) if (sops[i].sem_num == semnum && (sops[i].sem_op == 0) && !(sops[i].sem_flg & IPC_NOWAIT)) semzcnt++; } return semzcnt; } /* Free a semaphore set. */ static void freeary (int id) { struct semid_ds *sma = semary[id]; struct sem_undo *un; struct sem_queue *q; /* Invalidate this semaphore set */ sma->sem_perm.seq++; sem_seq = (sem_seq+1) % ((unsigned)(1<<31)/SEMMNI); /* increment, but avoid overflow */ used_sems -= sma->sem_nsems; if (id == max_semid) while (max_semid && (semary[--max_semid] == IPC_UNUSED)); semary[id] = (struct semid_ds *) IPC_UNUSED; used_semids--; /* Invalidate the existing undo structures for this semaphore set. * (They will be freed without any further action in sem_exit().) */ for (un = sma->undo; un; un = un->id_next) un->semid = -1; /* Wake up all pending processes and let them fail with EIDRM. */ for (q = sma->sem_pending; q; q = q->next) { q->status = -EIDRM; q->prev = NULL; wake_up_interruptible(&q->sleeper); /* doesn't sleep! */ } kfree(sma); } int sys_semctl (int semid, int semnum, int cmd, union semun arg) { struct semid_ds *buf = NULL; struct semid_ds tbuf; int i, id, val = 0; struct semid_ds *sma; struct ipc_perm *ipcp; struct sem *curr = NULL; struct sem_undo *un; unsigned int nsems; ushort *array = NULL; ushort sem_io[SEMMSL]; if (semid < 0 || semnum < 0 || cmd < 0) return -EINVAL; switch (cmd) { case IPC_INFO: case SEM_INFO: { struct seminfo seminfo, *tmp = arg.__buf; seminfo.semmni = SEMMNI; seminfo.semmns = SEMMNS; seminfo.semmsl = SEMMSL; seminfo.semopm = SEMOPM; seminfo.semvmx = SEMVMX; seminfo.semmnu = SEMMNU; seminfo.semmap = SEMMAP; seminfo.semume = SEMUME; seminfo.semusz = SEMUSZ; seminfo.semaem = SEMAEM; if (cmd == SEM_INFO) { seminfo.semusz = used_semids; seminfo.semaem = used_sems; } i = verify_area(VERIFY_WRITE, tmp, sizeof(struct seminfo)); if (i) return i; memcpy_tofs (tmp, &seminfo, sizeof(struct seminfo)); return max_semid; } case SEM_STAT: buf = arg.buf; i = verify_area (VERIFY_WRITE, buf, sizeof (*buf)); if (i) return i; if (semid > max_semid) return -EINVAL; sma = semary[semid]; if (sma == IPC_UNUSED || sma == IPC_NOID) return -EINVAL; if (ipcperms (&sma->sem_perm, S_IRUGO)) return -EACCES; id = (unsigned int) sma->sem_perm.seq * SEMMNI + semid; tbuf.sem_perm = sma->sem_perm; tbuf.sem_otime = sma->sem_otime; tbuf.sem_ctime = sma->sem_ctime; tbuf.sem_nsems = sma->sem_nsems; memcpy_tofs (buf, &tbuf, sizeof(*buf)); return id; } id = (unsigned int) semid % SEMMNI; sma = semary [id]; if (sma == IPC_UNUSED || sma == IPC_NOID) return -EINVAL; ipcp = &sma->sem_perm; nsems = sma->sem_nsems; if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI) return -EIDRM; switch (cmd) { case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case SETVAL: if (semnum >= nsems) return -EINVAL; curr = &sma->sem_base[semnum]; break; } switch (cmd) { case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: if (ipcperms (ipcp, S_IRUGO)) return -EACCES; switch (cmd) { case GETVAL : return curr->semval; case GETPID : return curr->sempid; case GETNCNT: return count_semncnt(sma,semnum); case GETZCNT: return count_semzcnt(sma,semnum); case GETALL: array = arg.array; i = verify_area (VERIFY_WRITE, array, nsems*sizeof(ushort)); if (i) return i; } break; case SETVAL: val = arg.val; if (val > SEMVMX || val < 0) return -ERANGE; break; case IPC_RMID: if (suser() || current->euid == ipcp->cuid || current->euid == ipcp->uid) { freeary (id); return 0; } return -EPERM; case SETALL: /* arg is a pointer to an array of ushort */ array = arg.array; if ((i = verify_area (VERIFY_READ, array, nsems*sizeof(ushort)))) return i; memcpy_fromfs (sem_io, array, nsems*sizeof(ushort)); for (i = 0; i < nsems; i++) if (sem_io[i] > SEMVMX) return -ERANGE; break; case IPC_STAT: buf = arg.buf; if ((i = verify_area (VERIFY_WRITE, buf, sizeof(*buf)))) return i; break; case IPC_SET: buf = arg.buf; if ((i = verify_area (VERIFY_READ, buf, sizeof (*buf)))) return i; memcpy_fromfs (&tbuf, buf, sizeof (*buf)); break; } if (semary[id] == IPC_UNUSED || semary[id] == IPC_NOID) return -EIDRM; if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI) return -EIDRM; switch (cmd) { case GETALL: if (ipcperms (ipcp, S_IRUGO)) return -EACCES; for (i = 0; i < sma->sem_nsems; i++) sem_io[i] = sma->sem_base[i].semval; memcpy_tofs (array, sem_io, nsems*sizeof(ushort)); break; case SETVAL: if (ipcperms (ipcp, S_IWUGO)) return -EACCES; for (un = sma->undo; un; un = un->id_next) un->semadj[semnum] = 0; curr->semval = val; sma->sem_ctime = CURRENT_TIME; /* maybe some queued-up processes were waiting for this */ update_queue(sma); break; case IPC_SET: if (suser() || current->euid == ipcp->cuid || current->euid == ipcp->uid) { ipcp->uid = tbuf.sem_perm.uid; ipcp->gid = tbuf.sem_perm.gid; ipcp->mode = (ipcp->mode & ~S_IRWXUGO) | (tbuf.sem_perm.mode & S_IRWXUGO); sma->sem_ctime = CURRENT_TIME; return 0; } return -EPERM; case IPC_STAT: if (ipcperms (ipcp, S_IRUGO)) return -EACCES; tbuf.sem_perm = sma->sem_perm; tbuf.sem_otime = sma->sem_otime; tbuf.sem_ctime = sma->sem_ctime; tbuf.sem_nsems = sma->sem_nsems; memcpy_tofs (buf, &tbuf, sizeof(*buf)); break; case SETALL: if (ipcperms (ipcp, S_IWUGO)) return -EACCES; for (i = 0; i < nsems; i++) sma->sem_base[i].semval = sem_io[i]; for (un = sma->undo; un; un = un->id_next) for (i = 0; i < nsems; i++) un->semadj[i] = 0; sma->sem_ctime = CURRENT_TIME; /* maybe some queued-up processes were waiting for this */ update_queue(sma); break; default: return -EINVAL; } return 0; } int sys_semop (int semid, struct sembuf *tsops, unsigned nsops) { int i, id, size, error; struct semid_ds *sma; struct sembuf sops[SEMOPM], *sop; struct sem_undo *un; int undos = 0, alter = 0; if (nsops < 1 || semid < 0) return -EINVAL; if (nsops > SEMOPM) return -E2BIG; if (!tsops) return -EFAULT; if ((i = verify_area (VERIFY_READ, tsops, nsops * sizeof(*tsops)))) return i; memcpy_fromfs (sops, tsops, nsops * sizeof(*tsops)); id = (unsigned int) semid % SEMMNI; if ((sma = semary[id]) == IPC_UNUSED || sma == IPC_NOID) return -EINVAL; if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI) return -EIDRM; for (i = 0; i < nsops; i++) { sop = &sops[i]; if (sop->sem_num >= sma->sem_nsems) return -EFBIG; if (sop->sem_flg & SEM_UNDO) undos++; if (sop->sem_op) alter++; } if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) return -EACCES; error = try_semop(sma, sops, nsops); if (error < 0) return error; if (undos) { /* Make sure we have an undo structure * for this process and this semaphore set. */ for (un = current->semundo; un; un = un->proc_next) if (un->semid == semid) break; if (!un) { size = sizeof(struct sem_undo) + sizeof(short)*sma->sem_nsems; un = (struct sem_undo *) kmalloc(size, GFP_ATOMIC); if (!un) return -ENOMEM; memset(un, 0, size); un->semadj = (short *) &un[1]; un->semid = semid; un->proc_next = current->semundo; current->semundo = un; un->id_next = sma->undo; sma->undo = un; } } else un = NULL; if (error == 0) { /* the operations go through immediately */ error = do_semop(sma, sops, nsops, un, current->pid); /* maybe some queued-up processes were waiting for this */ update_queue(sma); return error; } else { /* We need to sleep on this operation, so we put the current * task into the pending queue and go to sleep. */ struct sem_queue queue; queue.sma = sma; queue.sops = sops; queue.nsops = nsops; queue.undo = un; queue.pid = current->pid; queue.status = 0; insert_into_queue(sma,&queue); queue.sleeper = NULL; current->semsleeping = &queue; interruptible_sleep_on(&queue.sleeper); current->semsleeping = NULL; /* When we wake up, either the operation is finished, * or some kind of error happened. */ if (!queue.prev) { /* operation is finished, update_queue() removed us */ return queue.status; } else { remove_from_queue(sma,&queue); return -EINTR; } } } /* * add semadj values to semaphores, free undo structures. * undo structures are not freed when semaphore arrays are destroyed * so some of them may be out of date. * IMPLEMENTATION NOTE: There is some confusion over whether the * set of adjustments that needs to be done should be done in an atomic * manner or not. That is, if we are attempting to decrement the semval * should we queue up and wait until we can do so legally? * The original implementation attempted to do this (queue and wait). * The current implementation does not do so. The POSIX standard * and SVID should be consulted to determine what behavior is mandated. */ void sem_exit (void) { struct sem_queue *q; struct sem_undo *u, *un = NULL, **up, **unp; struct semid_ds *sma; int nsems, i; /* If the current process was sleeping for a semaphore, * remove it from the queue. */ if ((q = current->semsleeping)) { if (q->prev) remove_from_queue(q->sma,q); current->semsleeping = NULL; } for (up = ¤t->semundo; (u = *up); *up = u->proc_next, kfree(u)) { if (u->semid == -1) continue; sma = semary[(unsigned int) u->semid % SEMMNI]; if (sma == IPC_UNUSED || sma == IPC_NOID) continue; if (sma->sem_perm.seq != (unsigned int) u->semid / SEMMNI) continue; /* remove u from the sma->undo list */ for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { if (u == un) goto found; } printk ("sem_exit undo list error id=%d\n", u->semid); break; found: *unp = un->id_next; /* perform adjustments registered in u */ nsems = sma->sem_nsems; for (i = 0; i < nsems; i++) { struct sem * sem = &sma->sem_base[i]; sem->semval += u->semadj[i]; if (sem->semval < 0) sem->semval = 0; /* shouldn't happen */ sem->sempid = current->pid; } sma->sem_otime = CURRENT_TIME; /* maybe some queued-up processes were waiting for this */ update_queue(sma); } current->semundo = NULL; }